\%\ Université
‘é / LilleT

' ences et Technologies

Training report

Ot Camera Manager

HiST, Trondheim, Norway

Norwegian mentors French mentor

Tomas Holt Thomas Diette
Grethe Sandstrak

1* April to 30th June

by Antonin Durey

\\ Université
y Lille1
Sciences et Technologies

e\ Uﬁniversité Quicyg \ _%
LIRSS 1§12 HST Vizlab
Thanks

I would like to sincerely thank Tomas Holt and Grethe Sandstrak for guiding Thomas and me
throughout the project. They gave us many wise advises and tips to help us to work on the application and to
do the best work possible.

Thanks are essential to Jan Nielsen, and more generally HiST about their great welcome. I quickly
felt at home in Norway, and my questions always find answers.

I would like to thank Patrick Lebégue and the 'Relations Internationales' IUT's department for
presenting us abroad universities to realize our training period.

Finally, I would like to thank my French tutor, Thomas Diette, for following me week after week and
coming us in Trondheim to see our project and our job.

\ Uﬁniversité Quicg]
yuer ” — quby Viziah

Résumeé

Durant mon stage, j'ai travaillé dans le laboratoire de HiST sur la détection de points et la
visualisation d'images en trois dimensions. Thomas et moi avons été¢ chargé d'améliorer un logiciel fait par
les étudiants frangais venus l'année derniere. Ce logiciel prévoyait, entre autres, la configuration de caméras,
et la visualisation d'images provenant de celles-ci.

Le programme était fait en langage C++, avec une librairie graphique nommée Qt. Ne connaissant ni
I'un, ni l'autre, j'ai commencé ces trois mois par l'apprentissage du C++ et de Qt. A cet apprentissage est venu
s'ajouter celui de la librairie permettant la liaison avec les caméras, nommé FlyCapture, puis celui de la
librairie OpenGL.

Une fois le C++ et ces libraires maitrisées, j'ai pu commencer a améliorer le logiciel. J'ai notamment
travaillé sur certains fichiers de configuration pour rendre certaines opérations automatiques. La visualisation
de coordonnées en trois dimensions a également ¢été I'un des temps forts puisque j'ai découvert une
programmation graphique totalement nouvelle.

Ce stage m'a bien slir permis d'accroitre mes compétences techniques, notamment par l'apprentissage
de nouvelles librairies. Il m'a aussi fait découvrir une autre culture, d'autres méthodologies de travail, et m'a
permis de perfectionner mon niveau d'anglais.

Abstract

During my training period, I worked at the Hogskolen i Sor-Trondelag laboratory about points
detection and 3D images visualization. Thomas and me were made responsible for improving a software
made by last year French students. This application dealt with, amongst others, configuring cameras and
visualizing images coming from them.

The software was made in language C++, with a graphic library named Qt. I did not know neither the
language nor the library, I began these three months by learning C++ and Qt. To this learning, the camera
library, named FlyCapture, and the OpenGL library learnings was added to.

Once this job was over, I started improving the program. I especially worked on some configuration
files to make some operations become automatic, such as choose the cameras combinations. Three
dimensions data visualization was also a great highlight because I discovered a graphic way of programming
totally new.

This training period allow me to increase my technical skills, especially through the libraries
learning. It also make me discovering a new culture, other work methodologies, and make my English level
increase.

".I .-" '.Ill.lIl

\ Uﬁniversité Quicg b, .
yue " Ut M Vizla

TRONDHEIM

Table of contents

Introduction 7
I) From Norway to the project 8
L.1) INOTWAY ...eiiiiiiiieeiiiee ettt e e ettt e e ettt e e et e e e eabaeeeeatbaeeessaeeeenssaaeeeeesnnnnsens 8
Lo 1.1) WY NOTWAYeiieiiieiie ettt ettt ettt sttt st e bt e st eebeesateenbeessaeenseesnaeenseessseeeennns 8
1.1.2) Short introduction about NOTWAY.........c.ceeccuiieriiieeiiieeriee et ere e e e e e e e e eeaaeeeeeas 8
1.2) Hogskolen 1 Sor-Trondelag.............cocvviieiiiiiiiciiie et 9
1.2.1) Norwegian SChOO] SYSTEML.....c..eiiiiiiieiiieiieciie ettt ettt et e e eebee e e e 9
L.2.2) HAST ettt ettt ettt ettt s b e et e ete e s e esa e e e s e s e nseeseeseeseeseensensensensennnens 9
1.2.3) VAZLAD ...ttt et et e 10
L8 3 T N 4 T3 o) () [T AR 11
1.3.1) The @XISTING PIOJECE..ccuurieeeeiieeiieeeitieeeiteeeeiteeesteeesreeessreeesaseeessseeesseessseessseessseessseensseeas 11
1.3.2) The different improVemMENTS.c..eevierrierieeriieeieeiieeteesieesreeseesreeseesereeseessseesseesnnnns 11
IT) Taking in hand, configuration and visualization 12
2.1) Getting used t0 the PrOJECt.......iiviiieiiieeiie ettt et 12
1 N) T OO OU O TU PRSPPI 12

2 0 T O TSP 13
2.1.3) FIYCAPIULE.vieiiieieeiie ettt ettt ettt et e saaeebeesabeesseessbeenseeeensseeeansseesansnaennnn 14
2.1.4) The existing dOCUMENTALION.........ccuvieiiireriieesieeerteeeseeeetteeeteeesteeesreeessseeessseeessseeaeeenns 14
2.1.5) Reading, understand and improving the code.............cccveviieiiieniiiinienieceee e 14
2.2) Adding graphical COMPONENLS..........eeeeeeuriieeriiieeeciieeeeieeeeereeeeseeeeeeseerreeeeeens 15
2.2.1) THE MENU DAT....ccciiiiiiiieciie ettt ettt e e e e s b e e e aaeeesseeesaeaeeeensssaeeeeennnns 15
2.2.2) TRE PIOJECE L. vieurieeiiieiieeieeriee et eteeete e tee et esteeeaeesteeesseesaeenseeseessseensseeesnsseeennsseens 15
2.3) Calibration_Summary.dat............ccceeeriiiriiieniienie e ee e 16
2.3.1) Summary of all calibration flles..........coceeveriiriiiiiiiiie e 16
2.3.2) Navigate int0 the fI1e........cciiiiiiiiiieiicieee et r e e eaae e 16
2.3.3) Write, order and hide calibration Sroups............ccceceerieriienieniieiieeiee e 17
2.3.4) THE taD1@ VIBW....ueeiuiieiieeiiieiie ettt et ettt e et eteeebeesteeesbeesaessseessaeesseensaesssaenseansneeas 18
2.4) SOCKEE. QL. e e 19
2.4.1) THE taDIE VIEW.....eiiiiiieeiiieciie ettt e e et e e b e e e bee e abeeessbeeesaeeesseesnnaaeeanes 19
2.4.2) THE taDIE VIEW.....eiieiiieeiiieeiieeeiee ettt ettt e et e e st e e st ee e s beeenteeesaeeesaeesnsneeansaeeaanes 19
2.5) 3D PrOQramIMING........eeeeeirieeeeiiieeeiiiieeeeireeeesitaeeeesereeeestreeeesrreeeaeessasssssneseaeens 21
2.5.1) OpenGL and QUGL.......ccccoeiiiiiiieiieie ettt ettt te et e st e e e taeeeenbaeeeensaeeenns 21
2.5.2) POINtS aNd SHAPES....c.uviieiiiieiiieeiiieee ettt ettt e et e e snara e e e e ennnes 21
2.5.3) Scale, translation and TOtAtION..........c..ceeviiieiieeiie e e ettt e e e e e ereeeeaeeeeaaeeenes 22

N 0) 0 11115 g v 1 SR 23
2.6.1) GIUPPLT TIMNAZES....ccuvreeiireeiieeeitreeeitteeeitreeaiseeesseeessseeessseeassseesssseessseeessseeessseeessseesssseesssns 23

2.6.2) DOCUMENEATION.uiiieiiieeiiee ettt eetieeeteeeeteeeetreeeetbeeeeaseeeaseeeseeesraeessseeesasesessseseasseeeaanes 23

{
WY

\U'm'VE‘TSI"[é QLicg), _"e
er' IS |0 | ST Vizla

TRONDHEIM

ITT) Assessments 24
3.1) Human asSESSIMENL...........ceeiiiiiiiiiiieeeiiiiiieeeeeeciiree e e e e erreeeeeeeeeeeeeeeeeeeeeeenanennes 24
3.1.1) WOTKING 10 tAIMN......eeiiiieiieiieeiie et eiee et et e ete et eeeteereeetaeesbeesaaeesseessseensaessseenseessseensneens 24
3.1.2) RECEIVE INSIIUCLIONS. .. .eeeuveiererieeeiieesireeesiteeeetteeetaeeesaeesseeessseeessseeesseessseeessseessseeesessnnes 24

3.2) Technical aSSESSMENL.........cccceiuiiiiiiieiiiiiiee et e e e earae e e e e 25
3.2.1) PraCtiSINE...ccvieeiieiieeie ettt ettt ettt et e et e et e e ebeesteeenbe e teeesseessaeensaeeessaeeeassaeeeasraaeanns 25
3.2.2) New language and New LIDTaries.cocueiiuieiieiiiienieeieeieee ettt 25
Conclusion 26
Appendix 27
Appendix n°1 :Qt Camera Manager proceedings...........ccceeeerevereerrieeeniveeeennneeenn. 27
Appendix n°2 :Last year INTETACE.ccviieeriiieeeiiee e 28
Appendix n°3 :Improvement of the project interface............cccceeeevvvevrcierencnnnennnn.. 29
Appendix n°4 :Calibration summary file.........ccccceeeiiiiiiiiiieieiee e 30
AppendixX N°5 :GIUPPET TMAZES.....eeeerrrrreerrereerrreeeesreeeesrreeeesreeeessreeeesssssssssseeeeens 31
Glossary 32

References 33

!\\ Université @i _@%ﬁ
e b A Vizlab

Introduction

Second-year student at the Institut Universitaire de Technologie of Lille in computer science, | was
brought to carry out a training period in a company computer science service or in a foreign university. I
chose the second option, and went in Trondheim, Norway, at Hagskolen i Ser-Trendelag. | worked in a real
time 3 dimensions motion capturing and visualization laboratory, named Vizlab. The goal was to take over
the project began by French students who came last year, and improve it with several functionalities.

People working at Vizlab were used to deal with Trackpoint, which is their 3D motion capturing
software. Our project anticipated to configure cameras and Trackpoint, run it, and visualize the out images
and files. The major problem we faced was how to automate the most tasks while keeping the software the
most clearly as possible.

The project for Vizlab persons was very important because it had to make them gain the most time
possible. The majority of the functionalities prescribed could already be done using another way, but the
major aim was to gather them together, and automate the most of them.

In a first part, I am going to talk about HiST and Vizlab. I will also explain the project I took over, its
functionalities, and the tasks I was supposed to realize. Then, I will explain and describe the tasks I realize,
beginning from the graphical improvement to the 3D display, going through the files edition. Finally, I will
make out the technical and human balance sheet which will show the skills I gain throughout my training
period.

7/33

|I|"|'|I

Viziab

\\ Université QL

g Liller t)f RST

Sciences et Technologies TRONDHEIM

First section
From Norway to the project

1.1) Norway

1.1.1) Why Norway

At the end of the DUT', we had to realize a three months training period. We could choose between
doing it into a company in France, or in an foreign university. I was not hesitant at all because doing it
abroad was one of the reasons I went into the TUT? of Lille. I decided to choose a European northern country,
and my choice bears on Norway. I already came in Norway once, and I appreciated the country. Their
standard of living, their welcome and their culture convinced me to go in this Scandinavian country.

1.1.2) Short introduction about Norway

Norway counts around five million people and is one of the richest country of the world, thanks to its
oil and gas reserves. However, these reserves drained, and the question about the 'After-oil' remains.

The computer science domain is very important in Norway. In fact, to answer the 'After-oil' question,
several companies saw the day to develop and improve this
field in Norway. We can quote :

- Opera Software, founded in 1995, which is of
course the company which developed the Opera browser.
The Opera is also the browser used in Nintendo DS and Wii.

- FileMail, specialized in huge files transfer since
2008.

- Ot Development Frameworks, see more page 13. NORW AY 5

Located at the centre of Norway, Trondheim is the
third city in Norway after Oslo, the capital, and Bergen, with
a population of around 180 000 inhabitants. There is around
30 000 students in the city, what makes Trondheim the
biggest student city in Norway. Most of them come from the
Norges Teknisk-Naturvitenskapelige Universitet, but some,
as me, study at Hogskolen i Sor-Trondelag.

,; . R
1 See glossary Hllustration 1: Nordic map
2 See glossary

8/33

|I|"|'|I

\ UmverSIte Lille .
QU fit GEd vigan

Sciences et Technologies T RONEDIES

1.2) Hogskolen i Sor-Trondelag

1.2.1) Norwegian school system

The Norwegian primary and secondary school system is quite similar to the French one, except

Norwegian students do not have an exam at the end of the secondary school, as we have in France. The

higher education in Norway has, among others, six

— general universities, six specialised universities and

about twenty university colleges. Unlike France,

nearly all the higher education institutions are up to

the State. The higher education is conform with

European rules, and provides Bachelor, Master and

Doctorate certificate. There is also a two-year

certificate named Hogskolekandidat, which can be

2 Hogskolekandidat completed to get a Bachelor degree, provided by
:| (only University College) university colleges, as HiST.

PhD

Master

Bachelor

In France, the higher education is also
conform with European rules (except the Bachelor
degree is called 'Licence'). However, a number
sizeable of degree are delivered by private school, no matter the study field. In this way, degrees are very
different, and sometimes, it is very difficult to evaluate the importance and the quality of degrees.

In France, [was in a Institut Universitaire de Technologie (IUT) in order to be awarded of a Diplome
Universitaire de Technologie (DUT), which is also a university degree. This is a two-years degree which was
created to allow students to quickly enter labour market. But the figures show around 80% of the IUT
students carry on studies after being awarded. That is what I am going to do, because next year I will
incorporate a engineering school.

Hllustration 2 : Norwegian university system

1.2.2) HiST

HiST is a university college, and the second university in Trondheim after NTNU. It is also the
second largest university college in Norway. In fact, there is around 8 000 students. It gets six fields of
studying : Health and Social Work, Informatics and E-Learning, Teacher and Interpreter, Technology,
Trondheim Business School, and Nursing.

The Informatics and E-Learning domain contains four programmes which all provide a Bachelor
degree after three years : Computer Engineering, Network Administration, Information Technology and IT-
supported Business Administration.

The IUT I was contains a single programme. We were mainly studying Computer Programming, but

also networks, databases, and some generic subject as management, laws (generic and computer science),
and the unavoidable mathematics and English.

9/33

e\ U.m'VGTSl"[é Quicg _ﬁ
yliler bty Viziabh

1.2.3) Vizlab

Inside the Faculty of Informatics and E-learning at HiST, a motion capturing and visualization
laboratory has been established. "The project's main goal is to develop an accurate, portable, low-cost system
that integrates real-time 3D motion capture and visualization (R3DCV) of human and industrial objects'

n

movements in complex environments'".

Some students participate in the research
projects. In 2003, a project was made about
filming ski jumpers from different angles in a ski
jump with three synchronized video cameras.
Using methods derived from photogrammetry and
computer vision can be performed to coordinate
accurate 3D points position in the jump skis and
the body of the jumper.

Hllustration 3 : Visualization of a ski jumper

Feighi lyw Fixndian
Bym s Barwan Dislarnee

Doctorate students collaborated in a project named " m——— . ‘Z/
“Real time markerless motion capturing and visualization of '
human movement” in 2009.

The aim was to find methods for capturing motion with
ordinary video cameras without the use of markers, and use this
to control an avatar in real time.

Another project realized by doctorate student was a
"Geometric Modeling of Human Depth Perception in a 3D
Virtual Environment" project, made the same year. The aim was
to work about the depth perception in a virtual environment. The
relationship between the different parameters (as brightness,
linear perspective...) and perceived depth were studied and
compared to a geometrical model based on gaze tracking
measurements’, t

\

Eye Distanes P s

CAVE ENVIROMMENT

C

W SHUTTER GLASSES WITH EYE TRACKING DEVICE
lllustration 4 : Geometric Modeling in a
3D virtual environment

1 See http://hist.no/content/24483/R3DCV
2 All taken from http.//vizlab. hist.no/documents/2009 11 23 Hoestmote Short.pdf

10/33

e\ Uﬁniversité QLicyg \ _%
LIRSS 1§12 HST Vizlab

1.3) The project

1.3.1) The existing project

We did not start out with nothing. In fact, we took over the last year French students' project, named
Qt Camera Manager. It is a project to control and set up numerous cameras which run on both Windows
and Linux . The program will help to configure the cameras in order to do real-time three-dimensional video
motion tracking. The project was made in language C++, with the libraries Qt and FlyCapture'.

1.3.2) The different improvements

The first day we met our internship mentor, Tomas Holt, we were given a list of some tasks we
should realize. These tasks include, among others :

- be able to run the project on both platforms Windows and Linux, 32 and 64 bits

- read and complete the existing documentation

- show coordinates files (it is file produced by the 3D tracking software - Trackpoint) in several
views, as text view, table view and 3D view.

- make possible to edit configuration files used by Trackpoint, using several editing level

- choose markers on images used in input

- know if it would be possible to port the application to mobile platforms

In fact, launching Qt Camera Manager, we should be able to configure the different cameras with
the different files furnished by Trackpoint, launch Trackpoint, and visualize the coordinate files in output®.

We were explained the main quality of the software had to be clearness. Even if the software would
be used by computer science people, its use had to be controllable in a few minutes, and very simple to
understand.

1 See next page for C++, pages 13 and 14 for Qt and FlyCapture
2 See Appendix 1 : Qt Camera Manager proceedings page 27

11/33

' \\ Université

¢ Lille1

’ Sciences et Technologies

1bled

Second section : Taking in hand,
configuration and visualization

TRONDHEIM

1) Getting used to the project

2.1.1) C++

The project we took over was made in C++. It is an object-oriented language developed from C in
the 80s and standardized in 1998. It includes basic functionalities of C, as the standard library, and basic
functionalities of object-oriented languages as classes, polymorphism or inheritance'. Today, it is the third
language the most used behind C and Java.

I did not studied this language during my DUT, but I learnt Java, which is also an object-oriented
language. In this way, I quickly learnt C++ through the relationships the two languages have.

However, I had some troubles about the namespace concept, partly because Java does not have this

concept. In fact, the C compiler does not
allow two entities as attributes, functions
or variables having the same name in a
same part. To solve this problem,
namespaces where added. Namespaces
are contexts, as identifiers for the
compiler to know where a function, class

#ifndef HEADER_FILE_H
#define HEADER_FILE_H

/* This is a header file | */

class Header {

or keyword comes from. For example, the public:
C++ standard library is included into the Header():
std namespace. That is why we need to ~Header ()

write std:
print something. The other possible is to
explicit at the beginning of the file that
the namespace is used, writing using

:cout and not only cout to

protected:
vold incrementCpt(int addingValue);
bool cptIsPositive();

namespace std. private:
Unlike Java, C++ gets header int cpt;

files to store function signatures, class

members and some other informations. ki

Netherless, I was used to manipulate
header files since my beginnings in
language C last year, and this also was
not a difficult step.

1 See glossary

20

#endif // HEADER_FILE_H

Hllustration 5: header.h, an example of a C++ header file

12/33

\U'niVE‘TSI"[é @Licg \ i
ylile — TUbY Viziah

2.1.2) Qt

Qt is a cross-platform framework' made by Q¢ Development Frameworks,
previously named TrollTech, which is a Norway-based software company. It
a ‘B provides graphical components in C++ and also some others languages, and
= graphical classes. Qt is particularly known to be the library on which the KDE
graphical environment, one of the most used in the Linux desktop
L environments, is based.
= Qt also furnishes others methods and classes, as QThread or QDir for the
code to be cross-platform. In fact, this point is very important for the software
to be portable. The functions I was used to use to program with in C where
llustration 6 - Ot logo ~ Unix functions, so T needed to learn the Qt equivalents for the software to
work on Linux and on Windows.

I learnt graphical programming with Java months ago, and I rediscovered similar graphical
components. Nevertheless, each language has his distinctive features, and I tried to go all over the

functionalities and the components to discover how use at best Qt.

One of the most longest mechanism to learn was the signal/slot mechanism. In Java, I was used to
program with interfaces as MouseListener or ActionListener, and reimplement methods with the
desired code to make event-driven programming?. I also programmed using the Model-View-Controller to
separate classes and better organize the projects. With Qt, the best way to do event-driven programming is
the signal/slot mechanism.

The aim is having signals, as flags, to trigger methods called slots. The connection between signals
and slots is made by the method :
QO0bject::connect (objectSender, SIGNAL (nameOfTheSignalMethod()),

objectReceiver, SLOT (nameOfTheSlotMethod()));
Signals are mainly already written, but

it is also possible to create some. In that case, s Objectd ™, cohnect(Object1, signall, Object2, slot1)
they should be called by the keyword emit. connect(Object1, signall, Object2, slot2)
. . signall
Otherwise, they are automatically called, and signam T |
can provide parameters to the slots. The latter
are functions, consequently they contain code signal1
lines, receive signal parameters and can be \)
overwrote by daughter classes. By using many L » st
times QObject : : connect, is it possible to ——» slot2
link one signal to several slots, several signals —
to one slot, or both. This is very useful to [Object
maximize the project efficiency. signall | connect(Object1, signal2, Object4, slot1)
(" Objectd
slot1
e slotl
q slot2
slot3
connect(Object3, signali, Objectd, slot3) \—J
1 See glossary Hllustration 7 : Signal - slot concept

2 See glossary

13/33

e\ Uﬁniversité QLicyg \ _%
LIRSS 1§12 HST Vizlab

2.1.3) FlyCapture

FlyCapture is a Software Development Kit I OINT GI ‘EY

created by Point Grey Research, providing a camera
control library and an image acquisition software
named FlyCap2. The FlyCapture installation also
configures the IEEE 1394 bus, which is the bus for connecting high-flow peripheral devices, as cameras.

The library furnishes classes for camera representation named Camera, camera informations named

Innovation in Imaging
Hllustration 8 : Point Grey Research logo

CameralInfo, camera properties named CameraProperty, and some classes to record video files or to
save image files. The main class used in the project is, of course, the Camera class. It provides some vital
functions as Connect (), StartCapture (), StopCapture ()... Even if the work with FlyCapture
was mostly done, I had to master the library to understand the existing code.

2.1.4) The existing documentation

At the beginning, I read the existing documentation to understand how the project was made, and
what can be done with it. Quickly, the documentation proved to be unsatisfying. In fact, things explained
were too few, and not detailed enough : some Linux commands were false or obsolete.

With Thomas, I wrote again the User Guide and Technical Guide including last year and this year's
work'.

2.1.5) Reading, understand and improving the code

Before writing anything, I tested the software, removed and put again some code parts to see and
understand what they did. This was not a step really interesting, but necessary before coding?.

Quickly, I detected some improvements easy to program and very useful. The first one was the auto
detection of the cameras. I thought it would be useful to do it automatically. So, I made it, using a QThread,
which was a very good
occasion to work again
about it. I knew threads’

/* Internal class to detect cameras */
class ThreadDetectCamera : public QThread {

because I already used it at public:
i i ; * N i -
the IUT, but it was really p._ﬁ.tlfg[i‘ﬁfiDEtEEtCamera{hﬂalnwlndom w) : QThread() {window=w:}

interesting to work with it
in a real situation.

You can see on
[lustration opposite, the or 1,i te:
threadbetectCamera, I'n.1a.{nwin|:||:>w *window;
which is an internal class . '
of MainWindow. '

I also made the
properties update automatic, using the same thread method.

vold rom) {
window-=>startCamerabetection():

Hlustration 9: MainWindow internal class : ThreadDetectCamera

1 See 2.6.2) page 23 about the documentation

2 See Appendix n°2 : Last year interface page 28
3 See glossary

14/33

e\ Uﬁniversité .Linel } |
/
’ ‘I‘S_r_"i‘(l:;!L'IcSt]Tuchnulugéus lu i

2.2) Adding graphical components

2.2.1) The menu bar

saveConfigFile = new QAction(tr("Save Config File"), this);
saveConfigFile->setShortcut(QKeySequence(Qt: :CTRL + Qt::Key_5));

file->addAction(newProject);
file->addAction(loadProject);
file-=addSeparator();
file-»addAction(loadConfigFile);
file->addAction(saveConfigFile);

Hllustration 10: part of menubar.cpp

u
TRONDHEIM Iz a

During the test step, I was worn out
to always look about the right button. I
decided to add a menu bar, with shortcuts
to perform actions without using the
mouse. Even if this task was not asked by
our internship mentors, I thought it could
be very wuseful, and they quickly
approved my initiative. I was used with
menu bar in Java, and this was quite easy

to understand with Qt. In fact, the menu bar is a QMenuBar, which contains QMenu. In their turn, the
QMenu contain QAction. The shortcuts are the texts, as Ctr/+S, which mean you have to press both Ctr/

and S to perform the associated action.

2.2.2) The project tree

The main task we were told to realize was opening files, which supposed be able to localise files. It
could have been more logical to think first about a file list, just showing them one after the others. But the
solution was not satisfying. In fact, we had to see in which folder a file was, not only because it was easier to

open it, but also because the Trackpoint run
depended on many paths in the Trackpoint
folder.

Consequently, a tree creation was
advised, always to keep the software most
clearly as possible. On the project opposite,
it is very easy to look for, check and open
files and folders.

Creating a tree was also an excellent
occasion to rework recursion’', a notion I
already studied, in similar scenarios at the
IUT.

1 See glossary

v [trackpoint

¥ [application
¥ [input

"B calibration_summary_20140313_09...
» [T] images_grupper

optionsO0_c.txt
optionsO0.txt

» [output

U] TIs_DShowLib09_x64.dll
|| TIS_UDSHL09_vc10_x64.dll
' TrackPointOkt13.exe

» [] calibrationresults

15/33

Hllustration 11: project tree

|I|"|'|I

\ UmverSIte Lille 3
QU fit GEd vigan

Sciences et Technologies T RONEDIES

3) Calibration_summary.dat

2.3.1) Summary of all calibration files

The calibration_summary file is the result of the first run of Trackpoint'. As explained in the
Appendix n°4 : calibrations summary file, it is a summary, but it also contains all the files for all the
combinations. Consequently, the file is quite huge, and very long and difficult to read. The first step was to
navigate quickly into the file.

2.3.2) Navigate into the file

Even if a scrollbar was obvious to see all the files, it was not quick enough. A person looking for a
accurate file could spend many time looking for a file. This is absolutely not the goal of the software, its aim
being to gain time. So, I added an action accessible by a left click. The goal is very simple : doing this action
on a file summary line, for example / 2 3: NO CONVERGENCE - NEW IMAGES NEEDED, will bring you
at the beginning of the 1 2 3 combination file.

Going down to find a file is a good idea, but it would be also nice to get up. This has also been done,
and with a right click, you can go to the top of the file easily.

These actions, and many others, are made thanks to a very useful class, a QTextCursor. It
represents the cursor in a text or line edit field, and can be moved thanks to the function
QTextEdit: :moveCursor (QTextCursor: :MoveOperation, QTextCursor::MoveMode) .

The MoveOperation field is an enum. The values can be :

-QTextCursor: :Start Moving the cursor at the top of the QTextEdit,
-QTextCursor: :StartOfLine Moving the cursor at the start of the current line,
-QTextCursor: :Up Moving the cursor one line up,
-QTextCursor: :Right Moving the cursor one character to the right.

The MoveMode is also an enum which can be either MoveAnchor or KeepAnchor. Opposite to
MoveAnchor, KeepAnchor will select the text while moving the QTextCursor. This was very useful

to select and remove text.
The four lines below are the main of the 'Go to file' part.

/* While it is not the right line, move 'Down® */
doq
fileContain-=moveCursor(QTextCursor: :Downd:
lig = fileContain->textCursor().blockNumber(};

} while(!lines.at{lig).contains{"calibration_comb_"+key+".dat"})};

Hllustration 12: the lines to go down into the calibration_summary file

1 See Appendix n°1 : Qt Camera Manager proceedings page 27 for the trackpoint run

16/33

|I|"|'|I

\\ Université
e ¢ Lille1 vlzlah

Sciences et Technologies

812 HST

TRONDHEIM

2.3.3) Write, order and hide calibration groups

Once moving through the file was completed, the next task was to write into the file, change lines,
and especially the first line, which is essential to the Trackpoint second run. Allow the file edition was
something easy to do, but it was not enough. In fact, it was very dangerous. Even if only the first is read for
the second run, if the user writes without knowing it, or do a slip, all the file, and the second run could be
unusable.

To avoid these problems, I was asked to add some actions to minimize the human actions on the file.
This included options to choose the combinations for the second run, sort them, and hide some special
combinations.

As shown in the Appendix n°4 : calibrations summary file page 30, there is 2 sorts of combination
lines : the unavailable lines, with 'NO CONVERGENCE', and the others. But, after reflection, I noticed
there were others unavailable lines. In fact, because combination work with each other, if one is unavailable,
all the combination which work with are unavailable too.

Take an example to better understand : it is a calibration with 6 cameras, so you will need 2
combinations for the second run. If the combination 0_1 2 is unavailable, the reversed combination, which is
3 4 5is unavailable too.

This report involved many calculations. Worst, with 9 cameras, it was impossible to make strictly
calculations. Even if I was not able to realise calculations for more than 6 cameras, I understood why our
software was needed : sometimes, some calculations and options are almost impossible to forecast, without
trying all the possibilities.

Once the unavailable lines were detected, we should be able to select a line, and not a unavailable
one. In fact, the selected lines will be used to rewrite the first line at the top of the file. If an unavailable line
would be selected, the Trackpoint

second run would not work. 1 2 3: NO CONVERGENCE - NEW IMAGES NEEDED
By selecting a combination 1 3 5:NO CONVERGENCE - NEW IMAGES NEEDED
some other became useless. In y01; 2 3 5. NOCONVERGENCE - NEW IMAGES NEEDED
select the combination 1 2 5. all the 3 4 5:NOCONVERGENCE - NEW IMAGES NEEDED
others combinations with a_1’ 2or5 1-2_5:0.1432. Mean: 0.65, max: 0.88. No of frames used: 55
became useless. This second item 1_%_3:0.1725.Mean: 0.63, max: 0.86. No of frames used: 55
also involved many calculations. 1_2_4:0.1829. Mean: 0.56, max: 0.71. No of frames used: 55
Finally, I was asked to hide 2.4 3:0.1829.Mean: 0.56, max: 0.72. No of frames used: 55
unavailable and useless lines, to 2_3_4:0.1859.Mean: 0.57, max: 0.72. No of frames used: 55
show only the main one. 0 1 5:0.1982. Mean: 0.76, max: 0.99. No of frames used: 55
On the file opposite, the 0_2_3:0.2003.Mean: 0.66, max: 0.84. No of frames used: 55
unavailable lines are underlined, the 0_1_2:0.2143. Mean: 1.21, max: 1.65. No of frames used: 55
select line is in bold (it is the 1 2. 5 0 2 _5:0.2178. Mean: 0.8, max: 1.06. No of frames used: 55
line), and the useless line are thin. 0_3_4:0.227. Mean: 0.68, max: 0.81. No of frames used: 55
the only line which is not affected is 0_4_5:0.2437. Mean: 0.71, max: 0.88. No of frames used: 55
the 0 3 4 combination line, which 0 1 4:0.2453. Mean: 0.72, max: 0.89. No of frames used: 55
is the reversed combination of 0 2 4:0.2546. Mean: 0.74, max: 0.9. Mo of frames used: 55
1.2.5. In the source file, this 1 3 4:0.612.Mean: 2.29, max: 3.09. No of frames used: 55
information is stored with a enum 0 1 3:0.6877. Mean: 2.32, max: 2.93. Mo of frames used: 55
type, as the Illustration 14 next 0 3 5 N7349 Mean 2 41 max' 2 99 Noof frames nsed: 55
Hllustration 13: camera combinations, written differently to

age shows.
pag distinguish their status

17/33

e\ U.m'VGTSl"[é Quicg _ﬁ
yliler bty Viziabh

This is the state of each camera combination

0 '"MO CONVERGEMWCE...' or reversed combination

1 Hide because 'NO COMVERGEMCE...' or reversed

2 : Useless because a combination with one or more cameras in common 1s selected
3

4

Hide because useless

Mormal state, without anything special

* 5 : Selected combination. To be a combination during the record */
enum Calibrationd{

Failed=0,

HideByFail=1,

Useless=2,

HideByCalcul=3,

Normal=4,

Selected=5

* % o+ F o o

|
Hllustration 14 enum Calibration to keep in the sofiware each combination status. HideByCalcul shoud be
called HideByUseless.

2.3.4) The table view

The lllustration 15 below shows the kind of informations we can read in each combination summary.
The fact was, with the simple view, the informations were not clearly legible. The idea was to create another
view of these files, with informations sorted, and displayed in a table. The [llustration 16 below shows the
result of the table view creation. By comparing the two views, we can easily conclude the table view is much
more ergonomic. The user switches between the text and the table view with a menu, given with a right click.

Camno 0. Serial no. 10000
X0:1550.54 Y0:-2332.08 Z0:1508.39
AL:0.684638 BE: 0.898275 KA: 0.841765

C:1279.48 Cstd.dev.: 8.1341 XH:-31.521 XH std.dev.: 45.1389

YH: -8.657 YH std.dev.: 13.2987 AF:-0.00097 AF std.dev.: 0.001446
ORT:-0.001668 ORT std.dev.: 0.001529

F1:9.87e-008 F1std.dev..3.58e-008 F2:8.61e-014 F2std.dev.: 1.04e-013

Hlustration 15: Text view

Camno 0 XO: [1550.54 AL |0.684638 = 1279.48
Serial n” 10000 vo: |-2332.08 BE: |0.898275 Cstd.dev: [8.1341
Z0: |1508.39 KA: |0.841765 XH: -31.521

XH std.dev.: |45.1389
Camno 1 X0O: |-185.09 AL: |-0.5526 C: 1289.68

Serial n® 10001 YO0: |-2628.77 BE: |1.05218 Cstd.dev.. |4.1526
Hlustration 16: Table View

18/33

".I .-" '.Ill.lIl

\U'm'VGTSI"[é Quicg b, .
yuler1ut” S Vizla

! TRONDHEIM

2.4) Socket.dat

2.4.1) The text view

The socket.dat file is the file where all the 3D coordinates in output are, for every point, at each time.
The coordinates are written like this, for a simple line :

Point n°1 x Pointn°l y Point n°1 z Point n°2 x...

Each line corresponds to a time. For example, if you recorded with 9 points during 200 times, you
will have 5 400 numbers in a file. Even if they seem to be ordered, you can see on the [llustration 17 below
because there is not enough space on the screen, a moment for the record can be shown in two lines (or
more). This is totally unreadable if you want to know which coordinate belongs to which point, which axis
and which time. That is why we decided to add a another table view.

-0.185917 -0.164009 -0.00831997 0192266 549.984 -0.052614 699583 532.534 193.009
749.726 -0.219481 0127076 817.574 538.891 246.729
-0.195781 -0.170445 -0.00364489 0.197877 549.96 -0.0270923 88.1552 579.037 167.187
749.727 -0.222685 0132068 830.003 546.326 271.398
-0.168379 -0.181439 0.00403711 0.231661 549.96% -0.0372513 100.068 571.355 154.261
749.706 -0.217593 0.117403 835204 523.349 293.536
-0.189889 -0.181277 0.00414504 0.218464 549997 -0.053432 102.045 496.655 157.975

749,702 -0.217691 0117093 832947 448.91 318.863
Hllustration 17: socket.dat text view, not ergonomic at all

2.4.2) The table view

The first step creating the table view was correcting this line problem, and well align the coordinates.
To be sure lines would not split, I put a scrollbar for the user to move left and right to see the whole lines.
The coordinates were then put by pack of 3, which represent a point from a camera (x, y and z axis). The
result is shown on the /llustration 18 below.

-0.185917 -0.164009 -0.00831997 0.192266 549.984 -0.052614 09.9583
-0.195781 -0.170445 -0.00364489 0.197877 549.96 -0.0270923 88.1552
-0.168379 -0.181439 0.00403711 0.231661 549969 -0.0372513 100.068

Hlustration 18: First step : clearly separate the coordinates from the different cameras

The second step concerned the time. By scrolling down, the user could be quickly lost the time
notion, and it is essential for him to know at what time the coordinates he is looking for were taken. To
answer this problem, I added two time axis, on each side of the main table. Scrolling up/down or using the
scrollbar will make the 3 widgets move, to keep an perfect alignment. The result is shown on the //lustration
19 below.

2 -0.161794 -0.180453 -0.00879452 0.22196 549.965 -0.0416608 4728098 -251.4 24
2 -0.201768 -0.15111 -0.0285821 0.184981 550.016 -0.052248 -112.466 -160.5 23
26 -0.188861 -0.134061 -0.0213069 0.184599 550.031 -0.0470968 -262.123 44.61 26

Hllustration 19: Second step : the time axis

19/33

\U'niVE‘TSI"[é @Licg \ i
ylile — TUbY Viziah

The separation between the different points was not enough for our mentors, and I was asked to put
different background colours to have a better differentiation. The result is shown on the [llustration 20
below.

-0.181062 -0.157315 -0.00181953 0 0 0 113.531 276.3
-0.173389 -0.176439 0.00309683 -0.151782 550.091 0.25347 82.0758 154.6
-0.216234 -0.174035 -0.0087975 -1.2099 549.327 1.53497 69.1292 14.45

Hlustration 20: Third step : the background colours

Point n°0
Even if for my mentors did not asked me more, I decided to add a help pop up FEERIRIETT:E0: 1]
when the mouse is moved over a coordinate. This help pop up gives the user all the [¥E
informations he needs : the point, the time, the axis and its value. You can see the help

pop up opposite.

Hlustration 21:
help pop up

Because sometimes, there would have many points, my mentors asked me to be able to hide points.
This could be used, for example, to hide the points used for the scale, or some others useless points.

At the end, this view was very interesting thanks to its organisation. But to have a real idea of what it
represents, | had to test the 3D view, and so the 3D programming.

20/33

\U'm'VE‘TSI"[é Quicg i
yuer quby Viziah

2.5) 3D programming

2.5.1) OpenGL and QtGL

After talking about the 3D view, my mentors talked me about
OpenGL to program in 3D. I did not what it was, so I started a new research

work.

. L L OpenGL is a API for rendering 2D and 3D vector graphics. The first
problem I was faced to was how to make OpenGL and Qt work
simultaneously. After some research I found what I was looking for. In fact,

lllustration 22: OpenGL Qt has a module called QtGL. This module offers "classes that make it easy

logo to use OpenGL in Qt applications'".

QtGL module provides few classes, but I mainly used only 2 of them : QGLWidget and
QOGLFunction. The QGLWidget class inherits from the QWidget class, and, we can use the functions
furnished by the QGLFunction class inside.

2.5.2) Points and shapes

/* Drawing points at the "coordinatesShown' time */

After creating a for(int 1=0;i=(pointsDatas[coordinatesShown]).size();i=1+3){
QGLWidget in the project, I glBegin(GL_POINTS);
began to make some basic test to glvertex3f(GLfloat(polntsDatas[coordinatesShown][1]),

GLfloat(pointsDatas[coordinatesShown][i+2]),
GLfloat(pointsDatas[coordinatesShown][1+1]));
glEnd();

learn how it works. As soon as |
wanted to draw something, I
needed to call glBegin () and 3
glEnd (). These 2 functions are
the delimiters of the drawing
functions. g1Begin () takes a single parameter, which is a macro” which defines the type of drawing. It can
be GI.__ POINTS, GL_LINES, GL_TRIANGLES...

Between these functions, you call only few functions. The main I /* Drawing axis lines
used was glVertex3f () which is a function to draw a point. It takes 3 ¥ ¥ axis */
parameters which are of course the x, y and z cogrdmates of the point. Up glBegin(GL_LINES);
and opposite, you have example of how draw a point, and how draw a line. glVertex3f(0, 0, 0);

There are more.useful functlons,'for example glP01nts'lz§ (? s glVertex3f(1000, 0, 0);
glLinewWidth (), which take both an integer as parameter, which is in g]End();
pixel the size/width of the graphical component. I also often used
glColor3f () to change the brush colour.

This was a very nice way in to learn the 3D programming. In fact,
months ago, we made at the IUT a small software to draw in 2D. I rediscover some ways of doing, some
similar and some totally different.

Hllustration 23: drawing the points at the corresponding time

Hlustration 24: drawing line
example : x axis

1 http://qt-project.org/doc/qt-4.8/qtopengl. html
2 See glossary

21/33

!\ Uﬁniversité Quicg _%
LIRSS 1§12 HST Vizlab

2.5.3) Scale, translation and rotation

I also work with scale method, which was necessary to
show the images properly. Scaling the painting area included /* Scaling the painting area */
know the minimal and maximal value for each axis. I glScalef(1/(minMax[3]-minMax[0]),
calculated this, and scaled the painting area with the 1/(minMax[4]-minMax[1]),
coordinates found. You can see the function used to scale the 1/ (minMax[5]-minMax[2]1)):
screen opposite. The minMax array contains, in the order, the !
minimal value for the X, Y and Z axis, then the maximal value
for the X, Y and Z axis.

Hllustration 25: scaling

I did not used the translation, because it was not really necessary but also because all of the mouse
buttons were already used, and I cannot find a easy solution for the user. In fact, I thought if the scaling and
the rotation were good, the user would not have reason to move the painting area. However, I tried it during
my test stage, and the function I used was glTranslatef () with 3 parameters, meaning the X, y and z
translation.

The thing the most difficult for the 3D programming, and maybe for the whole training period, was
the rotation. it was a totally new notion because in 2D programming, you do not have to rotate the painting
area. The rotation is provided with the function glRotatef ().

Initially, I created sliders, going from 0 through 360 to represent the degree of rotation. But when the
user was moving one of the sliders, several things very strange were happening, and I spent hours to
understand why. Finally, I discovered I did not understand well how it works: the current angle rotation is not
keep in mind, and each time the glRotatef () function is called, it makes the painting area rotate with the
parameter given. For example, if you called glRotatef (270, 1, 0, 0), you rotate the screen of 270
degrees through the x axis. If you called it again with glRotatef (271, 1, 0, O0),you will not rotate
it of 1, but of 271 ! Consequently, I had to change some things in the software. I removed the sliders because
it was to difficult and restrictive to keep them, and I kept in the software the previous values.

The second problem I was faced was how rotate the screen without sliders. I choose to press the 'X',
"Y' or 'Z' key, and use the wheel mouse to rotate through clockwise ans anti-clockwise.

Finally, one last problem remained. each time the painting area was painted again, the function
glRotatef () was called. But if the
repaint was not called by a rotation ;+ pataztion
update, the rotation funct19n .dld hgve to * If the last force update was owed by a rotation */
be called. I also kept it it mind to if(rotation){
complete this task. The lllustration 26

opposite show the final result. xRot, gigﬁtaiei{xigi‘ ;g‘ ?E‘ ggj
yRot and zRot are calculated previously £ 1 otate f{:"l ot B4, 1WA U :I:
when mouseMoveEvent is called. glRotatef(zRot, 0.0, 0.0, 1.0);

Hllustration 26. painting area rotation

22/33

R ;huf

\ Uﬁniversité Quicg b, .
yue " Ut M Vizla

/ TRONDHEIM

2.6) Other tasks

2.6.1) Grupper images

The grupper images are the other way of having images in input for the second run of Trackpoint'2.
Because we can see the points on it, [was asked to display the point number, the cameras which took it, and
the coordinates values. Contrary to the socket file, these coordinates were in 2D, and not in 3D. In fact, it
was the coordinate on the image. These coordinates were stored into some files in the output folder. Because
a grupper image corresponds to a time, I had to open the file corresponding to the time of the grupper image
file. Down, you can see on the /llustration 27 the few lines needed to have this corresponding name, and to
open the file.

/* Having the number of the image (to load the right data file number) */
05tring underscoreString= name.split({"_").at(1};
Qstring number = underscoreString.split(".").at(0);

/* Removing the first 0 because the data file has only 4 numbers and not 5 as the image file */

number=number.mid{1, number.size()}}:

0string relativeImagePath = relativePathToDatas + "/" + number + ".dat";

OQFile myFile(projectPath + "/" + relativelmagePath);

if (ImyFile. open(QI0Device: :ReadOnly | QIODevice::Text)){
cout << "Fail to open the file : "<< QString{projectPath + "/" + relativeImagePath).toUtf&(
return;

}

Hllustration 27: Having the grupper image time number, and opening the corresponding data file

®

3

Cameran®:1

Once opening the file, the next step was, once a clicked was detected, to
calculate the distance from this point to every point at that time, find the closest, see if
the distance was not high, and display the tool tip. This was an unsuspected way to work . _
again about mathematics notions, as Pythagoras' theorem to calculate the distances. The Pointn™: 4

result tool tip is shown on the [llustration 28 opposite. X:395
y:506
. Hlustration 28:
2.6.2) Documentation help pop up

As I explained in the 2.1.4 part, the existing documentation was not satisfying, and we were asked to
complete it. The first step was document the code. Now, every function is described, and the most difficult
lines are explained. Even if it added lines, we thought it was essential for the potential people working on
this project after us. The second part and third was to write the 'User Guide', and the "Technical Guide'.

The 'User Guide' is a document explaining each functionality of our software, with which human
interaction possibility. This was mainly for the laboratory teachers who will use our software. Even if it was
for people knowing computer science, we had to be very conscientious and not forget anything because they
could not guess what we have done. If you want to know more about the Qt Camera Manager functionalities,
look into this document.

The 'Technical Guide' is a document which explains how work our software, what are the classes,
what do they do... Also intended to the potential people working on this project after us. Look into this
document is you want to know more about the classes and the way it is done.

1 See Appendix 1 : Qt Camera Manager proceedings page 27
2 See Appendix 5 : Grupper image page 31

23/33

|I|"|'|I

Viziab

Third section : Assessments

\\ Université QL

g Liller t)’ RST

Sciences et Technologies TRONDHEIM

3.1) Human assessment

3.1.1) Working in team

Working in team was not a something new. In fact, at the IUT, we were used to work in small groups
to make projects. In February this year, we even made a project for 12. For this project, I was not if 12
persons but with only one.

The first week, Thomas and I shared the work in such a way as to have parts well defined. I think our
main strength was to have a good organisation into the project. In fact, I never worked with Thomas' part,
and he never worked with mine. Of course, if we found a mistake, we told the other, but this was
exceptional, and we could work into our own part without being in trouble.

Approximately once a week, we were sharing our files to make sure the project was running on both
platforms Windows (Thomas) and Linux (me). When we finished our work, our mentors simply gave us new
tasks without impinging on the other's part.

3.1.2) Receive instructions

Contrary to the team work, receiving instructions was something quite new. In our projects at the
IUT, we were used to have explanations about the surroundings, but no more. We were mostly free to do
whatever we wanted, if it felt into the project category.

During the training period, this was totally different. We were not programming for ourselves, but for
users. Consequently, we had to listen very carefully about the instructions we received to do the best work
possible.

Something very different useful to notice too, we did not have defined work hours. We were told to
work, where we wanted (university or home), when we wanted. The only imperative we had was the weekly
meeting with our mentors. It was really nice to work like this because we could work in the atmosphere more
relaxed than, for example, in companies.

Finally, it was a excellent occasion to speak English a lot; not only our weekly meetings with our

mentors, but also with others abroad students. Even if | passed the TOEIC exam in February with 735, I
think these 3 months contribute to improve my English level and feel comfortable with it.

24/33

e\ Uﬁniversité QLicyg \ _%
LIRSS 1§12 HST Vizlab

3.2) Technical assessment

3.2.1) Practising

Contrary to the projects at the IUT, I was programming almost all the days, several hours per day.
This is really better than programming only 5 or 6 hours per week because at the IUT, at the beginning of the
each project session, we had to remind what we had done last time, and the tasks to do. This took time, and it
was truly appreciated to not do this every day during the training period.

The several improvements I was in charge to do make me work about several things I learnt at the IUT :

- The system programming' with the opening, closing and saving the calibration and socket files.

- The event-driven programming, and the graphical programming, when [added graphical
components, and handle user interactions with the software.

- Algorithmic problems, for example looking for a path line in a file.

3.2.2) New language and new libraries

I also learnt things completely new. Firstly, I learnt C++ and the Qt library. Many things were
similar with Java, so it was nice to learn comparing things I already knew and things I discovered.

I also learnt 3D programming with OpenGL. Even if the most difficult tasks I was given during the
training period were about 3D programming, it was fascinating to learn about it. In fact, 3D programming is
not something I could practise at the IUT, and even in companies I do not think it is something widespread.

1 See glossary

25/33

e\\ Université @i _@%ﬁ
e b A Vizlab

Conclusion

I chose to realize my training period abroad, in Norway, to perfect my English level and discover a
new culture and way of life. With Thomas, I took over last year project, which was made by French students.
This was a project about cameras configuration and 3D data visualisation.

I mainly worked into configuration and visualisation files. These different assignments allow me to
work again into notions I discovered at the IUT, as algorithmic, threads, graphic programming or system
programming. I also discovered news things as the C++ language or the Qt and FlyCapture libraries.

The 3D programming was something I totally discovered. This was something not easy to deal with,
and I let some tasks unachieved because of their complexity. In fact, if I had more time, I would have worked
more on the 3D programming, and especially converting 2D coordinates into 3D coordinates and reverse. |
have already spent time on time, but I could not find a satisfactory solution, and I had to move on something
else.

All these things gave me new skills in programming. I also gained maturity in project management,
whether it be about tasks distribution or about contact between programmers and users.

26/33

\ Université QL i
yuier " quty Viziah

Appendix n°1:
Qt Camera Manager proceedings'

cameras

TrackPoint
|
— |
" /
= Qt Camera Manager ~ r
1st run ; |
calibrate cameras
option, tt

et

el

» . +
R
calibration summary 'Y #
— 2nd run :

track 3D coordinates

o

socket A— - »y R
(3D coordinates)) grupper images
- other files prrl

blue : input red : output purple : input and output
black : software/run green : TrackPoint run : check
brown : show/edit grey : hardware

TrackPoint gets two type of runs :

- The first takes the option.txt file in input, calibrate the cameras, and show the calibration results in
some files, which the main is calibration summary.

- The second works with this file and the option.txt file. It takes images for the 3D detection either
from the cameras, or from existing images named grupper images. The second run generates many files for
each time, a resume of the coordinates which is the socket file and some others.

The goal of Qt Camera Manager is to be able to check cameras and their properties, edit the
configuration and calibration files, and show the 3D data in several views. Before, some coordinates views

were non existing, and the configuration had to be done manually.

The yellow arrow was done from last year. Thomas worked about the option.txt file. The bold brown
arrows show what [have done during the three months.

1 © to Antonin Durey. Made by myself.

27/33

!\ Uﬁniversité Quicg _%
LIRSS 1§12 HST Vizlab

Appendix n°2 :
Last year interface’

o e B

Cameras

.l
@ }’HHHHHW % %
Properties
I’HM.’.’.’.’WMH.’.’W| No selection I’MH.’HHMM’HHH|
UpdateProperties

Last year project interface

From top to bottom :

- The toolbar, with 6 actions

- The combobox to choose the camera type, followed by the button to update the tree

- The camera tree

- The buttons to change/reset a camera name, add/remove a camera group

- The property title, and the camera name which the properties below are (here, No selection)

- The widget summing up the properties and their value. Here, it is just a empty frame, because the
image is taken from the mainwindow.ui, which is the graphical edition of the software.

- The button to update the properties.

See also Appendix n°3 : Improvement of the project interface next page.

1 © picture taken from the software

28/33

\U'niVE‘TSI"[é Quicg’]
e quby Viziah

Appendix n°3 :
Improvement of the project interface’

oo =
Projects ||Cameras

FlyCapture Camera Manager

] [& Detected Cameras

No Selection

property auto value slider

brightness

gain O
exposure O
gamma
shutter
pan
framerate
automatic Trigger]

Improvement on the project interface

The left menu has been split. Now you can see two tabs : the project tab and the camera tab. The
button to update the camera tree has been removed : now, it is an automatic update. Same improvement
without the 'Update properties' button, it is also automatic.

No shown on the image, a menubar has been added.

See the User Guide to learn more about the software functionalities.

1 © picture taken from the software

29/33

Université
e\\r Lille1

Sciences et Technologies

Groups:1_2 503 4

Image input from file. Directory: input/images_gruppe

Cam no. 0 has serial no.
Cam no. 1 has serial no
Cam no. 2 has serial no
Cam no. 3 has serial no
Cam no. 4 has serial no.
Cam no. 5 has serial no.

Frame and wand type: ORIGINAL, with length: 74990 and coordinates:

-]

pointNo x
101 74997
102 19932
103 1

y
]

1

1 1

104 1 55012

SORTED - Camera combinations with S0 E

z

1
1

1

812 HST

TRONDHEIM

vlzlall

Appendix n°4 :
Calibration summary file'

10000
. 10001
. 10002 3
. 10003
10004
10005

1 2 3:NO CONVERGENCE -

NEW IMAGES NEEDED

1 3 5:NO CONVERGENCE -

NEW IMAGES NEEDED

5:NO CONVERGENCE -

NEW IMAGES NEEDED

NO CONVERGENCE -

NEW IMAGES NEEDED

Mean:
Mean:
Mean:
Mean:
Mean:
Mean:
Mean:

0.63,
0.56,
0.56,
0.57,
0.76,
0.66,
1.21,

max: 0.86. No of frames used: 55
max: 0.71. No of frames used: 55
max: 0.72. No of frames used: 55
max: 0.72. No of frames used: 55
max: 0.99. No of frames used: 55
max: 0.84. No of frames used: 55
max: 1.65. No of frames used: 55

0.2178.

Mean: 0.8, max: 1.06. No of frames used: 55
0.227. Mean: 0.68, max: 0.81. No of frames used: 55
0.2437. Mean: 0.71, max: 0.88. No of frames used: 55

0.2453. Mean: 0.72, max: 0.89. No of frames used: 55

0.2546. Mean: 0.74, max: 0.9. No of frames used: 55

2.3
3.4
1_2_
1.4
1.2
2.4
2.3
0.1
02
01
02
03
04
01
02
13
0.1
n

0.612. Mean: 2.29, max: 3.09. No of frames used: 55

0.6877. Mean: 2.32, max: 2.93. No of frames used: 55
N 72440 Maan 7 A1 mav- ? 39 KMa AF Framec 1icad- 55

5
5:0.1432. Mean: 0.65, max: 0.88. No of frames used: 55
500725,
_4:0.1829.
5:0.1829.
_4:0.1859.
_5 01982,
_3:0.2003.
2:0.2143.
3
4
5
4
4:
&
3
C

[-]

Lllustration 29 : begin calibration_summary file

1 © picture taken from the software

30/33

1 : the Groups line : the combination
which will be used for the second run
are written there (here, / 2 5 and
0 3 4).

2 : the directory where the grupper
images are.

3 : the camera lines, with their serial
number.

4 : Some informations useless for Qt
Camera Manager.

5 : The summary of each
combmatlon The lines are sorted
with the parameter written at 6.

Below these lines are all the
calibration file, one file per
combination. Each combination file
is around 40 lines. Counting the
combination number opposite, you
can imagine the size the
calibration summary can be.

o \ Université Quicg 3
Qe it BEl

TRONDHEIM

Appendix n°5 :
Grupper images'

Each grupper image in composed of as many images as cameras, one image corresponding to one
camera. Because the cameras numbers is always divided by 3, a line is always composed of 3 images.
Consequently, the image up comes from a 6 cameras record.

The white points are the points detected by the cameras. There are one grupper image per time.

1 ©to the files produced by Trackpoint

31/33

\\ Université

yLillel 7 SN Vizlab
Glossary

class (object-oriented programming) : contains properties representing the object state, and functions
representing their behaviour.

DUT (Diplome Universitaire de Technologie) : French two years degree, provided by IUTs.
framework : components software (such as packets, libraries...) set to create main line software.

event-driven programming : programming concerning the interaction with the users : mouse click,
key press...

inheritance (object-oriented programming): notion allowing reusable code through others classes, called
descendant classes.

IUT : University element where students prepare a DUT.
macro : rule, defining input sequence format

polymorphism (object-oriented programming) : notion allowing same code to be used in different types,
classes, and objects.

recursion : process of repeating items in a self-similar way.

system programming : programming dealing with files, processes...

32/33

e\ Uﬁniversité QLicyg \ _%
LIRSS 1§12 HST Vizlab

References

Books :

C++ GUI Programming with Qt 4
by Jasmin Blanchette and Mark Summerfield, with TrollTech contribution
Contains basic, intermediate and advanced learnings for Qt. Contains also a "Introduction to C++
for Java and C# Programmers".
Online version : http://grimaldi.univ-tin.fi/Qt/C++-GUI-Programming-with-Qt-4- 1st-ed.pdf

Websites :

ﬁ’: ODGI/ZCICZSSI"OOWIS. com
Previously named lesiteduzero.com. French web site about computer science and programming, with
tutorials and forum.

hist.no
Official website for HiST.

opengl.org

Official OpenGL website, with documentation, and forum.

pigrey.com

Official Point Grey Research website, with FlyCapture downloads and documentation.

gt-project.org

Official Qt website, with full documentation, tutorials and forum.

gtcentre.org

Unofficial Qt users forum.

stackoverflow.com
"Question and answer site for professional and enthusiast programmers". My favourite resource
during my training period.

vizlab.hist.no
Website about Vizlab, at HiST.

33/33

