
Qt Camera Manager

Technical guide

by Thomas Dubrulle and Antonin Durey
with Tomas Holt and Grethe Sandstrak collaboration

2014 edition

1/15

2/15

Table of contents
I) Setup the environment 4

1.1) On Windows..4
1.1.1) Qt..4
1.1.2) FlyCapture..4
1.1.3) Integrated Development Environment (IDE)...5

1.2) On Linux...7
1.2.1) Ubuntu..7

1.3) Checking..7

II) Implementation 8
2.1) QtCreator and main..8
2.2) MainWindow...8

2.2.1) Main presentation...8
2.2.2) Camera Tree..9
2.2.3) Project Tree...9

2.4) Camera implementation..9
2.3.1) Flycapture Implementation ..9
2.3.2) FlyCameraManager ...9
2.3.3) FlyCamera Parameters ...10
2.3.4) Image capture ...10
2.3.5) Trigger mode ..10

2.4) Opening files..11
2.4.1) ConfigViewerWidget..11
2.4.2) ImageViewerWidget...12
2.4.3) CalibrationViewerWidget...12
2.4.4) SocketViewerWidget..13

2.5) WidgetGL..14

III) Miscallenous things 15

Pages 4 to 6, 11 and 15 by Thomas Dubrulle
Pages 1 to 3, 7 to 9 and 12 to 14 by Antonin Durey
Pages 9 and 10 taken from last year's documentation

3/15

I) Setup the environment

1.1) On Windows

Please remind that MinGW is NOT compatible with FlyCapture (June 2014), and as
such you shouldn't use MinGW version for any libraries you need.

1.1.1) Qt

You can easily install a 32 bit version of Qt on windows. Just go on the official website,
download a Visual studio version of the library, run it and follow the instructions.

As for now, Digia -the firm behind Qt- doesn't offer an installer of Qt 64 bits for Windows.
Therefore, you will need to compile yourself all the Qt library and Qt Creator by using a 64-bits
compiler (with the compiler included in Visual Studio express) if you want to go to the 64 bits way.
It is not recommended though as it can be very hard to make it. If you can find another method like
pre-compiled builds, use it instead.

In the event that FlyCapture becomes compatible with MinGW, another solution is to use a
pre-compiled non-official version of Qt. You can find one of them on:
http://sourceforge.net/projects/mingwbuilds/files/ in "external-binary-packages/Qt-Builds".

The latest 64-bits version should be taken and extracted in the directory of your choice. An
executable file named qtbinpatcher should be located in the root of the archive. You should execute
it in order to set automatically the PATH variable.

1.1.2) FlyCapture

To install the FlyCapture 2 SDK, go on this page, you will need to create an account and
login: http://www.ptgrey.com/support/downloads/downloads_admin/Download.aspx. Search for the
latest version of FlyCapture, download it and install it. If you have any issue or question regarding
FlyCapture, you can contact the support of Point Grey research who will help you

4/15

1.1.3) Integrated Development Environment (IDE)

The project was created with Microsoft Visual Studio professionnal v2010 or MSVC 2010.
You can find a trial version of it on the web. You need then to download the Service pack 1 for
MSVC 2010 : http://www.microsoft.com/en-us/download/details.aspx?id=23691 . It will be used to
install the Visual Studio Qt add-in, which is needed to integrate Qt in your project : http://qt-
project.org/downloads .

You finally need to link all the libraries with the compiler and the linker within the project
settings.

For Qt:

Open Visual Studio 2010.
Go to menu Qt5 > Qt Options and check that the Default Qt Version is the version you use
Go to menu Qt5 > Qt Project Settings and verify that Core, GUI and Widget, and OpenGL are
checked.
Go to menu Project > Properties, into Configuration Properties :
- In General,
- Check if Platform Toolset is set to v100 (the version 2010 of MSVC is v100. Bigger numbers for
newer versions)
- Change Character Set to Not Set
- In C++ > General, add these to Additional Include Directories value if they are
not already present :
$(QTDIR)\include;
$(QTDIR)\include\QtWidgets;
$(QTDIR)\include\QtGui;
$(QTDIR)\include\QtCore;
$(QTDIR)\mkspecs\win32-msvc2010;
- In Linker > General, add this to Additional Include Directories value if it’s not
present :
$(QTDIR)\lib;
- In Linker > Input, add these to Additional Include Directories value if they’re
not present :
qtmaind.lib;
Qt5Widgets.lib;
Qt5Gui.lib;
Qt5Core.lib;

[For now, there is a issue regarding QGLWidget, the widget that allows to use OpenGL with Qt. It
seems that its header cannot be found on Windows, leading to compiler errors.]

5/15

http://www.microsoft.com/en-us/download/details.aspx?id=23691
http://qt-project.org/downloads
http://qt-project.org/downloads

For FlyCapture:

Open Visual Studio 2010.
Go to menu Project > Properties, into Configuration Properties :
- In General,
set -In Platform Toolset is set to v100 (the version 2010 of MSVC is v100. Bigger numbers for
newer versions)
Change Character Set to Not Set.
- In C++ > General, add these to Additional Include Directories :
C:\Program Files\Point Grey Research\FlyCapture2\include;
C:\Program Files x86\Point Grey Research\FlyCapture2\include;
- In Linker > General,
- set Enable Incremental Linking to No.
- set Ignore Import Library to Yes.
- set Use Library Dependency Inputs to Yes.
- add these to Additional Include Directories value :
C:\Program Files\Point Grey Research\FlyCapture2 (or wherever your FlyCapture folder is)
lib; C:\Program Files x86\Point Grey Research\FlyCapture2\lib; (same thing)
- In Linker > Input, add this to Additional Include Directories value :
FlyCapture2d_v100.lib (v100 is the platform toolset)

If you want to use Qt Creator, here are some instructions. Please mind that Qt Creator was
not used for the Windows version, and thus it may need some more work to make the project work
correctly:

After having installed Qt with any way, run QtCreator (its executable is located in the "bin"
file). You may have to configure your own kit of development to make it work. To do this, go in the
"tools/options..." select "build and run" and create a new kit in the kit panel.

A kit is composed of 3 elements: the Qt version, the compiler and the debugger.

• You can add a new Qt Version by finding its Qmake file (normally in the "bin"
directory of Qt).

• The compiler is not integrated in the pre-compiled build. You may add your own by
downloading it and installing it. Qt creator usually detect automatically the compiler
once installed.

• As with the compiler, the debugger is not included in the pre-compiled build and
need to be downloaded and installed. It is not compulsory to have a debugger to start
programming, but it can be really helpful when it comes to debugging, since you can
stop when you want.

When the installation is complete, it can be a good idea to create a simple program with
some Qt code in it to be sure it works properly.

1.2) On Linux

6/15

Warning : the commands are the Ubuntu commands. If you have a different Linux system,
check it by yourself and please update this file.

1.2.1) Ubuntu

First, you need to install the GCC and GPP compiler : sudo apt-get install build-essential
gcc (It must be already on your computer).

Next, you need the Qt API. For this project, you will necessary need QtCreator because the
graphic interface has been made with the graphic editor of QtCreator, and only QtCreator can read
this kind of file. To install these, use the command sudo apt-get install qt-sdk.

This will normally install QtCreator too.

Then, you need the FlyCapture SDK. Download it at the following link (account needed to
download): http://www.ptgrey.com/support/downloads/downloads_admin/Download.aspx

Select your camera, your model and your OS. In the results, go to software, and download
the right tar.gz (32/64 bits). Decompress it, and launch install_flycapture.sh

Finally, you will need the OpenGL library. Some functions used in the project come from
this library, and some come from the QGL library, which is an adaptation of the OpenGL library
with Qt. Because Qt is already installed on your computer, the last thing to do is install OpenGL. In
a terminal, simply use the command sudo apt-get install freeglut3-dev.

We suggest you to test to create and launch a simple C++ main at the end of the first step,
and a simple Qt application at the end of the second step to be sure that these two first steps are
working.

To generate the .tex and .html files, install doxygen with the command sudo apt-get install
doxygen doxygen-gui doxygen-doc.

Run it with the command doxywizard. Choose the directory where the source files are.
Choose the directory where to put the .tex and .html files. Go to Run tab, and Run it.

1.3) Checking

You can check if you compile in 32 or 64 bits by creating a simple program with one main,
and containing the line cout << sizeof(void *) << endl;

When you run the program, if the printout is 8 (8 bytes * 8=64bits), you compiled in 64 bits.
But if it is 4, you have compiled in 32 bits.

7/15

II) Implementation
One class diagram can be found in the project directory. It was made with StarUML on

Windows. So you should consider using it to have a better view of all classes. You can still use the
.jpg version if you cannot use it.

2.1) QtCreator and main

If you reached all the configuration steps without troubles, then launch QtCreator. In the
Edit section, make a right click into the project tree, and reach the file .pro (which must be named
ProjetNorvege.pro), and load it. It will load all the files (header, cpp and the ui files).

The main.cpp file is the entrance of the software. It ill simply create a MainWindow.

2.2) MainWindow

2.2.1) Main presentation

The MainWindow class, is, at its name indicates, the main window of the software. It is
divided into 4 parts :

- The menu bar : created with the MenuBar class
- The tool bar : created with the mainwindow.ui
- The left menu : created with the mainwindow.ui, but considerably used in MainWindow.

Contains 2 tabs : camera and project, see next page
- The central widget : contains QMdiSubWindow classes :

CalibrationViewerWidget, ConfigFileViewerWidget, ImageViewerWidget,
SocketViewerWidget1, and a QMdiSubWindow in the activeCameraEntry class (which
is an internal class of AbstractCameraManager, see next page).

The mainwindow.h also contains 2 internal classes, which are 2 QThreads. They are classes
to detect automatically new cameras, and update automatically the camera properties.

In the MainWindow class, the code is cut in 6 parts :
- the main functions : constructor, destructor
- the toolbar functions
- the menubar function : there is only a slot
- the camera tree functions : right click, double click...
- the thread functions : there are 2 functions, because there are 2 internal threads
- the project tree functions : right click, double click...

1 respectively page 12, 11, 12 and 13 in this document

8/15

2.2.2) Camera Tree

The cameras you plug will be automatically detected thanks to the
ThreadDetectCamera class, which is a internal class of MainWindow (see mainwindow.h).
In the MainWindow, you will find functions for the right click, the 4 actions coming from the right
click (about group and name) and functions about changing the current item.

2.2.3) Project Tree

In MainWindow, you will find functions for the right click, loading projects (which is done
recursively with createTreeFolder() and createTreeItem()), and double click which is
the way to open files.

2.4) Camera implementation

2.3.1) Flycapture Implementation

The management of these cameras is divided into two class : FlyCamera and
FlyCameraManager. This classes extends AbtractCamera and
AbstractCameraManager to implement API of FlyCapture into the app.

For further details on the implementation of each class and its methods, please refer to the
doxygen documentation.

2.3.2) FlyCameraManager

The FlyCameraManager class implements the AbstractCameraManager and
contains a vector of FlyCameras. It defines the list of properties which are available with the
FlyCapture cameras and that will be used in the FlyCamera object. Each property is set manually
and contains a name that refer to the camera property as well as min and max values which are
mostly used for the GUI since the FlyCapture Cameras automatically adapt the value if it goes out
of range.

The detectNewCameras() method detect all connected cameras thanks to the
BusManager which contains a list of all physical cameras connected. The BusManager is
included in the FlyCapture API.

9/15

2.3.3) FlyCamera Parameters

Management of parameters is simple and is based on two method : one to set value to the
camera, and another to get a value from camera in order to update the GUI. In case of FlyCapture
cameras, we have a pointer to the current camera instance. Each property has an automatic mode
and a value which is set and update at the same time as the value. The value of a FlyCamera
property can be a integer or a float number, so a single FlyCamera property has three attributes to
update with the same value in order to be sure to always set all types. When there is an update, the
value is fetched from camera, and to decide which value is the good the method tests the number of
decimals (set in CameraManager) and choose valueA for 0 decimals or absValue for 1 or
more.

2.3.4) Image capture

First of all, we need to set the camera in capture mode with the StarCapture() method,
then we need to get the image with retrieveBuffer() method. Once the image is stored, we
must convert it in order to be able to display it in the Qt interface. As the image from FlyCapture
cameras is a 8bits and we need a 32bits image, we reproduce the bits as to obtain a 32bits black and
white image. When live view mode is on, startAutoCapture() method is called in
FlyCamera class, which will loop and grab an image until live view is turned off, that is to say
when stopAutoCapture() method is called.

2.3.5) Trigger mode

In the GUI, the trigger mode of the Flycapture cameras can be set on and off via the
cameras properties block. This setting allows the user to use an external trigger to control the image
capturing.

The trigger mode has 4 parameters : onOff, mode, parameter and source. To configure an
external trigger, we have to set mode, parameter, source to 0, and onOff to true. When the automatic
trigger is off, hitting the capture-one-image button would freeze the program because it’s waiting
for the external trigger. The software trigger is therefore fired in these conditions to avoid that
problem.

Warning : We (students of 2014) did not work on that part. We only read and tried to
understand this part of the code. This documentation has been taken from the 2013 students'
documentation. We are not responsible for any mistakes in it.

10/15

2.4) Opening files

2.4.1) ConfigViewerWidget

The structure of the option file wizard is composed of two classes, in an effort to keep the
flexibility at its maximum.

The first class, called ConfigFileViewerWidget, show the window in the main area of the
application. It then reads the informations contained in the option file with the second class, the
“ConfigFileReader”, so that it displays them on the screen. The advantage with this structure is that
unless the format of the file is significantly changed, the ConfigFileReader class shouldn't need to
be changed at all, as it performs all tasks that the ConfigFileViewerWidget needs: reading one
parameter with type checking or not (in the case we don't know its type) at the desired position.

On its side, the ConfigFileViewerWidget has been cut into several methods that add each
one part of the window. It has been designed so that it is easy to modify the way the wizard work.

There are several methods that add a specific widget to edit a certain type of parameters.
They all follow the same pattern: they create the widget and add it to the wizard layout with the
specified parameter at the given position. They all returns the newly created widgets so that they
can be used elsewhere.

if you want to add another type of parameter, only the createWizard() and saveWizard()
methods need to be changed by adding a new condition in it. You may also add a new method to
add the new widget to the wizard.

To save the wizard into the QtextField, the saveWizard() method use lists of parameter
indexes along with their corresponding widget. It then loop on all of them, and replace the old value
with the one contained in the widget.

You can notice there are two classes in the ConfigFileViewerWidget: the
ConfigFileViewerWidget itself and the pathEditBox. The PathEditBox is simply a field with a
button that allows the edition of paths with an explorer, which is more convenient than writing it
yourself. If you want, you can move it to another file and use it for other plug-ins, and add an
include in the configFileViewerWidget, since the two aren't normally intertwined together.

11/15

2.4.2) ImageViewerWidget

The ImageViewerWidget class is the class to open the grupper images. There is 5
functions inside :

- the constructor,
- initializingImage() : initialize the image with the time number provided in

parameter,
- initializingPoints() : initialize the points according to the number time (kept in

mind as attribute in the class),
- mousePressEvent() : click on the image,
- wheelEvent() : using the mouse wheel.

2.4.3) CalibrationViewerWidget

The CalibrationViewerWidget class is the class to open and read the
calibration_summary file. We can cut the functions in 4 parts :

- the constructor and initializing functions,
- the changing view functions : showTextView() and showTableView(),
- the right click function and assimilated,
- the left click function and assimilated.

showTextView() put a TextEdit as main widget. This widget is in fact a
CalibrationEdit, which is an internal class of CalibrationViewerWidget. It has been
reimplemented to be able to use mousePressEvent().

The left click functions are only used in the text view. In its assimilated functions, you will
find functions as select(), calculateShowFailed(), calculateShowUseless(),
calculUselessCombinations(), and the two functions used to make the combo sort :
sortCombo() and executeSortChange().

These functions are sometimes really difficult to understand. In the calculation functions,
keep in mind the enum type Calibration is crucial to keep in mind which is the state of
each combination. In the functions which display lines, or not, the best thing is the function
moveCursor(QTextCursor::MoveOperation, QTextCursor::MoveMode) to select
some text, removeSelectedText() to remove text, and insertText() to, of course, insert
text.

We do not advise you to remove some lines and test the project without these. At best, the
project will compile, launch, but make some things strange you will not understand, particularly
because there are many loops and the operation are made several times. Maybe removing the loops
could be a better idea to test, it depends of your feelings...

Many comment lines have been put to try to help you at best to understand how we thought
it and how we made it.

12/15

2.4.4) SocketViewerWidget

The SocketViewerWidget class is the class to open and read the socket file, which is
the file which contains the 3D datas. We can cut the functions in 4 parts :

- the constructor and initializing functions,
- the changing view functions : showTextView(), showTableView() and

show3DView(),
- the right click function and assimilated,
- the assimilated functions for the table view : areaBarsMoved(),

displayToolTip(), valueChanged() and getTimeSlider().

There are only assimilated functions for the table view, because the text view does nothing,
and the functions for the 3D view are in the WidgetGL class (see next page).

The widgets containing the values are CoordinatesLabel, which is an internal class
extending QLabel. It has been reimplemented to be able to use the mouseMoveEvent()
function, which allow the QToolTip displaying.

13/15

2.5) WidgetGL

The WidgetGL class is the class which inherits from QGLWidget, which is the QtGL
component to use QtGl and OpenGL functions inside. There are 5 functions in this class:

- the constructor
- initializeGL(), initializing function coming from QGLWidget
- initializingCameraCoordinates(), function to initialize the cameras

coordinates.
- paintGL(), which is the function where you put all your painting desired.
- resizeGL(), function to resize cleanly 3D painting area according to the widget size
- showView(), show the view according to the time provided as parameter
- eventFiltrer(), check all the events : right and left click, key pressed and released,

and wheel event.
- setXRotation(), setYRotation(), setZRotation() : setting the new rotation

angle.

This class may also contains code which is not working. This is because we have not enough
time to finish it :

- the right click : it should provided default view angle, so that the user would not have to
deal with X, Y, Z key, and wheel mouse

- the camera points are well initialized, but not drawn every time. Seem to have a problem,
maybe about depth...

- the left click : clicking on a point to have its number and coordinate. Currently, the
conversion from 3D coordinates to 2D is not working.

14/15

III) Miscallenous things

Tips:

• You may find in the files several comments named “//TTODO”. They tell improvements
or bug fixes we didn't have the time to do. Usually they have some explanations in them, as
well as some ideas on how to do them. I hope they will be useful if you want to improve
even more the application :).

• You can find most if not all of the methods you need in Qt, which have similarities with
Java standard library. Using them instead of system dependant methods ensure that you keep
your project multi-platform.

• The installation of the project (not the software themselves) on Windows is more
complex than on Linux, but it may be useful to have someone working on Windows while
the other is on an Unix system to constantly check the compatibility of the project on these
two platforms.

• On Visual Studio, if you get an LNK error (generally at the beginning when you install
the project), it is often because the linker doesn't find a method, a class or a library in
all the files you have included. Go to your project settings and check within General >
linker the include directories you have added.

15/15

