
Leveraging
browser fingerprinting to

strengthen web authentication

Antonin DUREY

Supervisors:
Romain ROUVOY - Professor

Walter RUDAMETKIN - Associate Professor with HDR

Jury:
Marc TOMMASI - Professor, University of Lille - president

Olivier BARAIS - Professor, University of Rennes 1 - reviewer
Sonia BEN MOKTHAR – Director of research, LIRIS, CNRS - reviewer

Isabelle CHRISMENT - Professor, TELECOM Nancy - examinator
Gunes ACAR – Assistant Professor, Radboud University Nijmegen - examinator

Arnaud PÉRILLOUX, Ministry of Armies - invited

University of Lille & Inria center
CRIStAL laboratory

MADIS doctoral school

14th January 2022

Utiliser
les empreintes de navigateurs

pour renforcer l’authentification
sur Internet

Antonin DUREY

Directeurs:
Romain ROUVOY - Professeur

 Walter RUDAMETKIN – Maître de conférences avec HDR

Jury:
Marc TOMMASI - Professeur, Université de Lille - président

Olivier BARAIS - Professeur, Université de Rennes 1 – rapporteur
Sonia BEN MOKTHAR – Directrice de recherche, LIRIS, CNRS – rapportrice

Isabelle CHRISMENT - Professeur, TELECOM Nancy - examinatrice
Gunes ACAR – Assistant Professor, Radboud University Nijmegen - examinateur

Arnaud PÉRILLOUX, Ministère des Armées - invité

Université de Lille & Centre Inria
Laboratoire CRIStAL

Ecole Doctorale MADIS

14 Janvier 2022

Acknowledgements

I would like to thank all the people that helped me realizing this thesis and writing this
manuscript.

First, I would like to thank my directors, Romain Rouvoy and Walter Rudametkin.
It was a pleasure to share ideas and receive comments and advices from both of you.
Thanks you, Pierre Laperdrix, for all the work done together and all the interesting
discussions we had together. I would like to thank all the members in the Spirals team,
particularly Lionel Seinturier, Laurence Duchien, Antoine Vastel, Vikas Mishra, Rémy
Raes, Guillaume Fieni and Sarra Habchi.

During my Ph.D, I had the chance to work on an authentication solution in a real
system. Thank you, Didier Benza, Anne Combe, Jérôme Berthier, Quentin Laize and
Florent Derudas for working with my on this project and allowing me to have interesting
results for these experiences.

Thank you to all the people I met during the extra-activities I performed during my
Ph.D: Yann Secq and Fabien Delecroix when teaching, Ludovic Macaire when being a
representant of the Ph.D. students at the Doctoral School and all the Ph.D students I
met while being president of the ADSL - Ph.D Students in Science of Lille Association.

Thank you, Pierre Bourhis, Iovka Boneva and Sophie Tison, for supervising me for
my internship and my end-of-studies project during my Master when you encouraged
me to do a Ph.D. Thank you, Martin Monperrus for also motivating me to do a Ph.D
during my Master.

Finally, I would like to thank my sisters, parents and friends. Your support was
essential during this adventure and gave extra-motivation all along this journey.

Abstract

Security on the Web is a major concern for any user, and authentication solutions, such
as multi-factor authentication, negatively impact the user experience and add cost and
complexity that may prevent them from being more accepted by users and more largely
deployed. Browser fingerprinting is a stateless and permission-less technique that
collects information about the user’s device, OS, browser and configuration to form an
identifier. While it has mainly been studied from a tracking perspective, its properties
make it interesting for security, and more specifically, for Web authentication.

In this thesis, I provide 3 main contributions:
• I manually browse 1, 485 pages on 446 websites and measure fingerprint collection

on sensitive pages of websites, such as sign-up and sign-in pages. I evaluate the
resilience of these websites against 2 types of attack, stolen credentials and cookie
hijacking, and show that fingerprinting, despite its potential, is barely used to
protect against these attacks.

• I collect fingerprints in a controlled environment to precisely measure the attributes
that offer interesting uniqueness and stability properties. I use this knowledge
to design and implement a fingerprints linking algorithm for Web authentication
and evaluate it on a dataset of 952, 828 fingerprints collected from 64, 235 browser
instances, and show the algorithm is reliable and relevant to link fingerprints.

• I design and implement an authentication scheme that strengthens web authen-
tication by using browser fingerprinting. I evaluate the scheme on a centralized
authentication server with 82 users. I demonstrate that browser fingerprinting
strengthens Web authentication while having a minimal impact on the user experi-
ence.

With these contributions, I argue that browser fingerprinting improves web authenti-
cation and conclude this manuscript by providing short-term and long-term perspectives
to improve this work.

Résumé

La sécurité d’un système d’authentification est un élément dont l’importance continue
de croître depuis la naissance du Web. De nos jours, c’est un point d’intérêt majeur et
des solutions comme l’authentification multi-facteur ont un impact fort sur l’expérience
utilisateur qui empêchent ces techniques d’être acceptées par la majorité des utilisateurs
et d’être déployées à grande échelle sur Internet. Une empreinte de navigateur est
une technique d’identification sans état et qui ne requiert pas de permission. Elle collecte
des informations sur l’appareil, l’OS, le navigateur et la configuration de l’utilisateur.
Alors que cette technique a majoritairement été étudiée à des fins de suivi en ligne,
ses propriétés en font un élément intéressant pour renforcer la sécurité sur Internet, et
notamment l’authentification. Dans cette thèse, je propose 3 contributions relative à
l’usage des empreintes de navigateur pour améliorer l’authentification sur Internet:

• Je visite manuellement 1, 485 pages Internet appartenant à 446 sites et je mesure
que les empreintes de navigateur sont collectées sur des pages sensibles, tel que des
pages d’authentification. J’évalue la résistance de ces sites contre 2 attaques, le vol
de mot de passe et le vol de cookies, et montre que les empreintes de navigateur
sont peu utilisées pour se protéger contre ces menaces.

• Je collecte des empreintes de navigateur dans un environnement contrôlé pour
mesurer précisément les attributs qui offrent des propriétés intéressantes en terme
d’unicité et de stabilité. J’utilise cette connaissance pour concevoir et implémenter
un algorithme pouvant lier des empreintes de navigateur. J’évalue cet algorithme
sur un ensemble de données formé de 952, 828 empreintes provenant de 64, 235
instances de navigateur, et montre que l’algorithme est fiable et pertinent.

• Je conçois et implémente un schéma d’authentification qui renforce l’authentification
en utilisant la technique des empreintes de navigateur. J’intègre ce schéma dans
un système centralisé d’authentification comportant 82 utilisateurs. Je démontre
que la technique des empreintes de navigateur améliore la sécurité tout en ayant
un impact minime sur l’expérience utilisateur.

Avec ces contributions, je démontre que les empreintes de navigateur sont légitimes
pour renforcer l’authentification sur Internet. Alors que le Web est en constante évolution,
je conclus en proposant des perspectives à court et long terme pour améliorer ces travaux
et suivre l’évolution de la technique des empreintes de navigateur.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Context . 1
1.2 Objectives . 2
1.3 List of Scientific Publications . 3
1.4 List of Tools and Prototypes . 4
1.5 Outline . 4

2 State of the Art 7
2.1 Context . 7

2.1.1 Birth of the Web . 7
2.1.2 Web evolution . 8

2.2 Web authentication . 10
2.2.1 Concept . 10
2.2.2 Threats and attacks . 11
2.2.3 Protecting data access . 13
2.2.4 Bots protection techniques . 14
2.2.5 Improving authentication . 15

2.3 Browser fingerprinting . 19
2.3.1 Definition . 19
2.3.2 Properties . 19
2.3.3 Attributes . 20

2.4 Browser fingerprinting studies . 32
2.4.1 Measuring browser fingerprinting properties 32
2.4.2 Detection and classification . 36

2.5 Browser fingerprinting countermeasures 38
2.5.1 Blocking scripts . 39
2.5.2 Unifying attributes value . 40

viii Table of contents

2.5.3 Changing attributes value over time 41
2.5.4 Induced information leaks . 42

2.6 Browser fingerprinting usages . 43
2.6.1 User Tracking . 43
2.6.2 Bot Detection . 44
2.6.3 User Authentication . 45

2.7 Conclusion . 47

3 FP-Redemption: Studying Browser Fingerprinting Adoption for the
Sake of Web Security 51
3.1 A Dataset of Secure Web Pages . 52

3.1.1 Websites Under Study . 52
3.1.2 Web Page Acquisition . 53
3.1.3 Monitored Fingerprinting Attributes 53
3.1.4 Resulting Dataset Description . 54

3.2 Classification of Fingerprinters . 56
3.2.1 Incremental Script Classification 57
3.2.2 Script Classification Results . 59
3.2.3 Algorithm results validation . 60

3.3 Analysis of Secure Web Pages . 61
3.3.1 Browser Fingerprinting Attributes 61
3.3.2 Similarities of Browser Fingerprinting Scripts 63
3.3.3 Origins of Browser Fingerprinting Scripts 63
3.3.4 Web page type and website category & country impact 65
3.3.5 Additional Security Mechanisms 67

3.4 Websites resilience against 2 attack models 68
3.4.1 Stolen credentials . 68
3.4.2 Cookie hijacking . 71

3.5 Discussion . 73
3.5.1 Intents in fingerprinting usages 73
3.5.2 Fingerprinting is barely used for security 74
3.5.3 Deficiencies in the state of the art 75

3.6 Conclusion . 75

4 FP-Controlink: Studying fingerprinting under a controlled environ-
ment to link fingerprints 77
4.1 Methodology . 78

4.1.1 Controlled environment . 78
4.1.2 Browser versions . 79
4.1.3 Attributes . 79

Table of contents ix

4.1.4 Data collection . 80
4.2 Causes of fingerprints diversity . 82

4.2.1 Desktop evaluation . 82
4.2.2 Mobile evaluation . 86
4.2.3 Layers responsible for an attribute change 87

4.3 Fingerprints evolution through browser versions 88
4.3.1 Release versions . 90
4.3.2 Nightly/beta versions . 93
4.3.3 Categorizing attributes . 94

4.4 A browser fingerprints linking algorithm 94
4.4.1 Main goal . 94
4.4.2 Design . 95
4.4.3 Parameters . 96

4.5 Evaluation of the linking algorithm . 97
4.5.1 Datasets . 97
4.5.2 Key performance metrics . 97
4.5.3 Parameters values . 99
4.5.4 In-the-wild results . 100

4.6 Discussion . 102
4.6.1 Ethical consideration . 102
4.6.2 Choosing parameters value . 102
4.6.3 Linking algorithm improvements. 103

4.7 Conclusion . 103

5 Advanced risk-based authentication using browser fingerprinting 105
5.1 Authentication scheme . 106

5.1.1 Design . 106
5.1.2 Challenges . 107

5.2 Implementation . 109
5.2.1 Legacy Authentication Systems 109
5.2.2 Rising to the challenges . 110
5.2.3 Authentication scheme and CAS plugin 115

5.3 Evaluation . 116
5.3.1 Dataset constitution . 117
5.3.2 Key Performance Metrics . 117
5.3.3 Trusted network fingerprints and authentication attempts 118
5.3.4 Linking algorithm scores . 118
5.3.5 Collection and analysis time . 120

5.4 Discussion . 121
5.4.1 Ethical considerations . 121

x Table of contents

5.4.2 Security versus user experience 122
5.4.3 Client-side-generated information 122
5.4.4 Device management rules . 123
5.4.5 Compromised device . 124
5.4.6 Adding features to the authentication scheme 124

5.5 Conclusion . 125

6 Conclusion 127
6.1 Contributions . 127

6.1.1 FP-Redemption: Studying Browser Fingerprinting Adoption for
the Sake of Web Security . 127

6.1.2 FP-Controlink: Studying fingerprinting under a controlled environ-
ment to link fingerprints . 128

6.1.3 Advanced risk-based authentication using browser fingerprinting . 129
6.2 Short-term perspectives . 129

6.2.1 Discovering new fingerprinting JavaScript attributes 129
6.2.2 Studying attacks targeting fingerprinting-based authentication sys-

tems . 131
6.2.3 Investigating Web Assembly technology 132

6.3 Long-term perspectives . 133
6.4 Concluding note . 133

Bibliography 135

List of figures

2.1 Evolution of the Web device market share from 2009 to 2021. 8
2.2 Evolution of the browser market share from 2009 to 2021. 9
2.3 Examples of captcha techniques . 15

3.1 Distribution of the 446 visited websites per country & category. 55
3.2 Distribution of visited pages per type (the sum exceeds 1,485 pages as

some pages match several types). 56
3.3 Flow chart representing our incremental script classification algorithm. . 57
3.4 Iteration distribution of the label put on the scripts of our dataset. . . . 60
3.5 CDF of number of attributes used by scripts. 61
3.6 Distribution of attributes families across fingerprinters. 62

4.1 Number of attribute value changes per version grouped by browser out of
a total of 56 attributes in our experiments. 92

4.2 Number of changes per attribute per browser. Only attributes that have
changed at least once during a version update are shown on this graph. . 92

4.3 Browser instances identification duration according to the threshold and
weights sets . 99

4.4 Number of assigned IDs to each browser instance according to the threshold
and weights sets . 101

4.5 Evolution of the proportion of True Negative (TN) and False Positive (FP)
when evaluating our algorithm in attack mode. 102

5.1 Description of the interactions when authenticating on an SSO system. . 109
5.2 Description of the changes required on an SSO when adding a dynamic

canvas check step. 111
5.3 Description of the new authentication scheme with our plugin and new

components. 116
5.4 Fingerprints number ratio according to the threshold and weight set . . . 119
5.5 Distribution of the fingerprint collection time 120
5.6 Distribution of the linking algorithm analysis time and linear regression . 121

List of tables

2.1 Summary of the techniques used and results obtained by different detection
and classification studies. 39

3.1 Distribution of first-party & third-party scripts per website category. . . 64
3.2 Summary of security organizations, with the accessed attributes and the

presence in the web pages of our dataset. 65
3.3 Number of pages including a multi-factor authentication mechanism or a

bot detection technique, depending on the page type and the presence of
a browser fingerprinting script in the page. 67

3.4 Parameters and results concerning the reauthentication experiment. . . . 70
3.5 Number of websites involved in each step of the validation for the session

and basket cookies attacks, and results of the attack on the validated subset 72

4.1 Recapitulative table concerning the desktop devices, OS and browsers on
which we run our experiments . 81

4.2 BrowserStack devices with OS, OS version and browsers used for the
mobile dataset. 81

4.3 Number of plugins and unique plugins supported by browsers, on Ubuntu
20.04 . 84

4.4 Attributes that are different between Android and iOS, and correspond-
ing value(s). Each value has been observed for all browsers tested on the
specified OS. 86

4.5 Layer(s) impacting the value of an attribute, and category of our attributes. 89
4.6 Set of weights to be evaluated, and corresponding weights for the canvas

attribute . 99

Chapter 1

Introduction

1.1 Context

The Web has reshaped our lives. From buying a train ticket to checking a cooking recipe,
or watching live events from all around the world, Internet became essential to everyone’s
professional and personal life. As the Web expanded, users and websites have shared
more personal data that needs to be protected from attackers. In this context, web
authentication provides users a way to ensure they are the only ones allowed to access
private data. Historically, such systems were designed only with a password verification
step. These systems have suffered several attacks, such as phishing or dictionary ones.
As these attacks have become more sophisticated, password-based systems are no longer
sufficient to ensure security on the Web.

On the one hand, websites and regulation authorities encourage users to adopt
more secure mechanisms, such as Multi-Factor Authentication (MFA). Multi-Factor
Authentication consists in verifying a user’s identity through multiple channels called
factors. Commonly used factors are email or mobile devices (e.g., an SMS message),
on which the user receives a code to confirm she is in control of the factor. According
to the factors used and their characteristics, they require the user to perform more
actions to authenticate. Thus, using several authentication factors often implies a
degradation of the user experience due to added complexity. The user experience is
essential because it influences the acceptance of the authentication system and users
are known to degrade security in search of usability. Users might be more willing to
perform additional actions during the authentication attempt for sensitive accounts, such
as banking. More generally, authentication systems must decide whether they prefer to
strongly strengthen the security while degrading the user experience or if they prefer to
adopt a security mechanism that have a lighter impact on the user experience but that
might be easier to attack.

2 Introduction

On the other hand, browser fingerprinting is a stateless and permissionless identifica-
tion technique based on the collection of attributes. Rather than setting a server-side
generated identifier on a client-side storage space, such as cookies, browser fingerprinting
collects client-side information about the browser, device, and configuration to form an
identifier. The uniqueness property of browser fingerprinting has been observed in several
studies [96, 117, 103], which present varying uniqueness percentages (from 30% to 80-90%)
due to the different composition of their datasets. As browser fingerprinting collects
client-side information, this information can evolve due to changes in configuration or
because of a browser update. Because of such evolutions, a fingerprinting changes over
time. However, to be reliable at identification, fingerprints collected from the same
browser instance at different times should be identified as such, that is, linked. This
linking problem has been studied in the state of the art to study its use for tracking
devices [150, 119]. Other studies have monitored the usage of browser fingerprinting
in-the-wild and found the technique is mostly used for tracking [125, 85, 84, 97] and bot
detection [151, 111]. Finally, other work has discussed the usage of browser fingerprinting
to enhance web authentication. They highlight the potential security improvements
introduced by this technique [145, 130, 87]. These studies are mainly theoretical and do
not propose an evaluation of such an authentication system.

1.2 Objectives
The main objective of this thesis is to build an understanding of how browser
fingerprinting can increase the security of web authentication systems.

In the state of the art, studies that measured the use of browser fingerprinting in-
the-wild used automated tools to crawl the Web. They often visit public pages, such
as home pages or random pages reachable from the website’s home page. By doing so,
they miss sensitive pages that require specific interactions, such as filling out sign-up or
sign-in forms that process authentication events.

The first objective is to measure if browser fingerprints are collected on sensitive
pages, and to what end. To this end, I will study the following research questions:

RQ1: Are browser fingerprints collected in the wild, on pages that process sensitive data
that needs to be protected?

RQ2: How are browser fingerprints used to protect user accounts and websites against
stolen credentials and cookies hijacking?

The second objective is to study fingerprinting in a controlled environment to
measure precisely the causes of the uniqueness and evolution of a fingerprint, and to use

1.3 List of Scientific Publications 3

this knowledge to design a fingerprint linking algorithm for web authentication. Studying
these following research questions will help fulfill this objective:

RQ3: How does the change of a hardware or a software component in a device affect its
browser fingerprint?

RQ4: What is the impact of a browser update on the fingerprint and can it be anticipated
or even predicted?

RQ5: How to design a browser fingerprint linking algorithm for authentication that
combines efficiency and reliability?

The third objective consists in implementing such an authentication system and
evaluating it to measure the security gains and the impact on the user experience. I will
study the following research questions to tackle this objective:

RQ6: What are the user experience concerns that should be addressed in a web authen-
tication system that uses browser fingerprinting?

RQ7: Does the usage of browser fingerprinting for authentication provide security
improvements and high usability?

Throughout this manuscript, I answer each of these questions by studying the existing
literature and technical reports from browser vendors, by developing tools and proof of
concepts, and by performing data analyses on controlled and in-the-wild datasets.

1.3 List of Scientific Publications
Parts of this thesis are adapted from the following papers:

[94] Antonin Durey, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. FP-
Redemption: Studying Browser Fingerprinting Adoption for the Sake
of Web Security. In Detection of Intrusions and Malware, and Vulnerability
Assessment - 18th International Conference, DIMVA 2021 - https://hal.inria.fr/
hal-03212726/.

[95] Antonin Durey, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. An it-
erative technique to identify browser fingerprinting scripts. Arxiv preprint
- https://arxiv.org/abs/2103.00590.

Antonin Durey, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. FP-
Controlink: Studying browser fingerprinting in a controlled environ-
ment to develop a linking algorithm for web authentication. Under sub-
mission.

https://hal.inria.fr/hal-03212726/
https://hal.inria.fr/hal-03212726/
https://arxiv.org/abs/2103.00590

4 Introduction

1.4 List of Tools and Prototypes
During this thesis, I developed several prototypes and tools to collect and classify data.
To increase the reproducibility of my results and encourage open research, I publicly
share the following implementations:

• A browser extension to monitor browser fingerprinting attributes accesses, used in
Chapter 3 [4].

• An implementation of our script classification technique used in Chapter 3 [5].

• The code of our bash scripts and configuration files for our desktop controlled
environment in Chapter 4 [3].

• A proof-of-concept authentication scheme leveraging browser fingerprinting [2].

1.5 Outline
This thesis is organized as follows.

Chapter 2 presents the context of this work. I explain the evolution of the Web since
its birth and its consequences on diversity of devices and browsers used to browse the
Web. I review existing threats targeting authentication systems and sensitive information,
such as phishing, data leaks, and present existing techniques to strengthen authentication
mechanisms, such as multi-factor authentication and risk-based authentication. I describe
browser fingerprinting, what it consist in and what information it collects to identify
users. I present the different uses of fingerprinting, from tracking to security. I conclude
this chapter by presenting the current limitations of the state of the art and how this
thesis will explore new aspects.

Chapter 3 explores the uses of browser fingerprinting to enhance web authentication.
I manually browse a dataset made of sensitive pages from various website categories and
detect scripts collecting the browser fingerprint of their users. I present the adoption of
browser fingerprinting by these pages, as well as its use to complement existing security
features, such as multi-factor authentication and bot detection. I evaluate the resistance
of websites against 2 attacks that target the authentication process, namely stolen
credentials and cookies hijacking.

Chapter 4 leverages a controlled environment to design a browser fingerprint linking
algorithm. I collect fingerprints from various browsers, on both desktop and mobile
devices. I measure the sources behind the diversity of browser fingerprinting attribute
values and evaluate the stability of attributes over browsers updates. I leverage this
knowledge to build a linking algorithm and evaluate it against an in-the-wild dataset.

1.5 Outline 5

Chapter 5 presents our authentication scheme using browser fingerprinting. I present
user experience concerns for authentication systems leveraging browser fingerprinting.
I address these as well as the state-of-the-art security requirements by implementing a
risk-level authentication scheme based on browser fingerprinting in a real authentication
system. I provide an evaluation on both security and user experience of the authentication
system and discuss its limitations and potential improvements.

Chapter 6 summarizes key results and insights about the contributions of this
manuscript. Finally, I provide short-term and long-term perspectives concerning browser
fingerprinting and its evolution.

Chapter 2

State of the Art

2.1 Context

2.1.1 Birth of the Web

The Web was created by Tim Berners-Lee at CERN in 1989 to connect researchers and
allow them to share resources more easily. It was based on 3 technologies:

• HyperText Markup Language (HTML): a description language that presents infor-
mation in a structured way,

• Uniform Resource Locator (URL): a string that identifies resources on the Web,
• HyperText Transfer Protocol (HTTP): a protocol for machines to communicate

and transfer HTML documents.
The first browser developed to understand and interpret these technologies was

WorldWideWeb only accessible on NeXT operating system [83]. The first cross-OS
browser was launched in 1992 with the first line-mode browser [26].

The Mosaic browser was created at the National Center for Supercomputing Applica-
tions (NCSA) while Netscape was created in 1994. Mosaic was licensed by Windows,
and was used to create Internet Explorer in 1995. These 2 browsers were the 2
major ones at the end of the 90s and tried to become dominant. Known as the first
browser war, this period was opportune to develop new technologies to become the best
browser. Because of this, the innovative browsers were preferred by web developers, and
many browsers tried to pretend to be each other to stay competitive. This instability is
reflected in the history of the User-Agent string and is still the reason why User-Agent
strings are formatted strangely [55]. The JavaScript language was created and released
by Netscape. It allows the Web to become dynamic by providing APIs to interact with
the user. In response, Microsoft created the CSS language (Cascade-Style Sheet) to
add style to the HTML pages. As Microsoft installed Internet Explorer by default
within its Windows OS, it allows Internet Explorer to be reached by many users as

8 State of the Art

2009-01
2010-01

2011-01
2012-01

2013-01
2014-01

2015-01
2016-01

2017-01
2018-01

2019-01
2020-01

2021-01

Date

0%

20%

40%

60%

80%

100%
De

vi
ce

 m
ar

ke
t s

ha
re

Desktop
Mobile
Tablet
Other

Figure 2.1: Evolution of the Web device market share from 2009 to 2021.

a default choice. By 1999, Internet Explorer owned 99% of the browser market. In
response, Netscape went into making its code open source and created the not-for-profit
Mozilla organization, that created the Firefox browser in 2002 [63]. Apple launched
Safari on its MacOS system in 2003 [82]. Chrome was released in 2008 [22] while
Edge was launched in 2015 to replace the aging Internet Explorer browser.

2.1.2 Web evolution
Increasing diversity of devices. Originally built for desktop devices, the Web is
now accessed by more and more diverse devices. Figure 2.1 present the evolution of the
distribution of the device market share from 2009 to 2021. With the birth of smartphones
in 2007, mobiles started to massively access the Web. Since 2017, they represent 45% to
55% of the devices accessing the Web. Nowadays, many other devices can browse the
Web, such as connected watches, TVs and even cars. This increases the need for websites
to adapt to users and their devices.

Increasing diversity of APIs. JavaScript was developed to transfer a part of the
logic treatment from the server-side to the client-side. It allows websites to increase the
possible interactions with the user. The language keeps evolving along revisions to both
adapt to the increasing diversity of devices connecting to the web and to introduce new

2.1 Context 9

2009-01
2010-01

2011-01
2012-01

2013-01
2014-01

2015-01
2016-01

2017-01
2018-01

2019-01
2020-01

2021-01

Date

0%

10%

20%

30%

40%

50%

60%
Br

ow
se

r m
ar

ke
t s

ha
re

Firefox
Chrome
IE
Safari
Opera
Android
UC Browser
Edge
Other

Figure 2.2: Evolution of the browser market share from 2009 to 2021.

APIs to develop new functionalities, such as accessing the network information of the
connected device or connecting a VR headset to the device. While the standardization
of JavaScript is ensured by Ecma International, browser vendors often develop
non-standard APIs to test new functionalities on their users. For example, Chrome
implemented the non-standard Keyboard API [58] to detect the keyboard layout of the
user and get the best of it. This increases the diversity of APIs available in browsers.

Evolution of the browser market share. As we explained in Section 2.1.1, the first
browser war lead to the birth of CSS and JavaScript, which are now omnipresent on
the Web. More generally, it was the opportunity to develop new features to attract more
users. The same situation happened at the end of the 2000s and during the 10s, during
the second browser war. While Internet Explorer was declining, other browser
vendors raced to attract more users and become dominant. The evolution of the browser
market share from 2009 to 2021 is presented on Figure 2.2. Since a couple of years,
the situation has stabilized. Chrome now represents 65% of the browser market share,
followed by Safari with 15%, Firefox and Edge with 5% each. The remaining 10%
are shared between less-popular browsers.

Consequences and browsers orientation. The abundance of APIs developed by
browsers during the second browser war lead to many privacy issues for users. Some

10 State of the Art

browser vendors, such as Mozilla, Apple or Brave, have centered their browser on
privacy. They propose user-friendly mechanisms to manage privacy settings and are
leading the removal of functionalities having privacy or security issues for users. For
example, Brave did not install Flash by default [16] and Firefox disabled Flash in
2019 [43], more than one year before its official end of life.

2.2 Web authentication

2.2.1 Concept
2.2.1.1 Definition

On the web, authentication is a process that allows a system to verify the identity of a
user. It consists in requesting an identity proof to the user. If the identity proof can be
verified by the system, the authentication is successful.

A factor or authentication factor refers to the identity proof the user submits to a
system to authenticate. The term credentials generally includes the factor(s) and the
user identifier, which can be the email address of a user, her username or her phone
number.

The lifetime of an authentication factor can be summarized in 3 main steps:
• Enrollment: This step allows the system to register the factor of the user. During

this step, the system stores the factor for future checks. The enrollment is often
performed during the account creation. This way, the system has the guarantee
that the user that creates the account owns the authentication factor.

• Verification: This step is the one happening during the authentication attempt.
The system asks for the factor and compares it to the one stored during the
enrollment step.

• Recovery/Revocation: This step allows the user to change his factor if it has
expired or if the user lost it. It ensures the factor can be used for a long period of
time. Additionally, the user must be able to revoke a factor if she no longer has
access to it.

An authentication scheme covers the collection and verification of all the factor(s)
and feature(s) used to authenticate the user. While an authentication scheme aims at
being secure, it must also compose with the user experience. If users have to perform too
many constraining actions, they will hesitate to adopt the authentication scheme. Thus,
it is essential for authentication schemes and systems to find a good balance between a
satisfying security level and a limited degradation of the user experience. In this context,
a Single-Sign On (SSO) is an authentication system that allows a user to authenticate
once and have access to several services. These services interact with the SSO system
to check the authentication state of the user and verify its session, but all these steps

2.2 Web authentication 11

are unnoticeable by the users. The main advantage of a SSO system is to minimize the
number of factor to setup and memorize. However, the loss of the authentication factor(s)
used by the SSO compromises the whole set of applications available behind the SSO
system and is the major drawback.

2.2.1.2 Password and flaws

The Web mostly relies on Single-Factor Authentication (SFA), which relies on the
collection and verification of one factor to authenticate. On the Web, the most used
factor is the password [131]. This factor has the advantages of being easy to setup by
websites during the enrollment step, easy to use during the verification step, and easy
to choose and remember by users. However, the password factor suffers from several
security flaws:

Weakness. As the password is a string, users can put anything in it. This can result
in weak passwords as users choose short passwords with common Latin characters in it.
Florencio et al. [100] studied the strength of passwords in the wild. They collected 540, 000
authentication data, including passwords, and studied their length and complexity. They
showed around 78% of the passwords are only lowercase letters, 20% being only formed
of digits.

Predictability. While passwords are created by users, they often choose common
patterns, including names, dates or phrases [152, 146]. This creates a social engineering
vulnerability because attackers can study their victims by collecting data about them
and try to guess the password based on the information they collected.

Reusability. The multiplication of services on the Web increased the number of
websites users have to authenticate on. As a consequence of this phenomenon, several
studies highlighted and alerted about the reuse of passwords by users. Wash et al. [153]
conducted a survey over 134 participants and found out the participants tend to reuse
each password on 1.7 to 3.4 different websites. Even if passwords are not directly reused,
users tend to just modify existing passwords to create new ones [113].

2.2.2 Threats and attacks
The password factor, and more generally the web authentication mechanism, is under
constant attack. In this section, we present the most common attacks against web
authentication systems.

Compromised credentials. The most common attack against an authentication
system relies on the compromising of the authentication factor—in many cases, the
password. This can happen in an active or passive way. Active techniques rely on the
action of an attacker to steal a password, by using various techniques, such as phishing.

12 State of the Art

Phishing is a technique where an attacker builds a fake authentication page to collect
the user credentials. The fake page is designed to mimic the real page where the user
usually enters her login information. For example, if an attacker aims at stealing the
banking credentials of users, he will mimic the authentication page of the bank by creating
a new page that will look and behave similarly. Then, the attacker distributes the URL
of his page—often via an email—and makes the user believe she needs to click on the
link to authenticate. Several techniques are used to make the user believe the email is a
real one, such as a billing problem or an expiration date [75]. The goal of the attacker is
to give the user confidence [105]. The user must not suspect an attack or she will change
her password immediately, leading to an unsuccessful attack and an increasing attention
about this kind of attack. Then, phishing is both a technical and social engineering
attack.

While phishing emerged in the 90s [54] and is almost as old as the Web itself, it
is still one of the most prevailing attack [6]. As the phishing pages generated gained
likeness with the targeted ones, previous techniques that could help the users detecting
a phishing page are no longer sufficient. For example, the lack of TLS certificate was
previously described as a strong indication that the page was a phishing one. Attackers
focused on increasing the percentage of phishing pages with a certificate, that reached
83% in 2021 [6]. Phishing mainly targets financial institutions (24.9%), social medias
(23.6%), web mails (19.6%) and payment systems (8.5%). Phishing aims at raking large
and targeting a large number of users for a single attack. When the attack specifically
targets a user or group of users because of their positions and ability to perform sensitive
operations such as banking or financial operations, it is called spear phishing.

Passwords can also be compromised in a more passive way. This is the case when a
database of passwords is not well protected and can be publicly disclosed or accessed
without restriction. When the database is found by attackers, they can query it, find
credentials and try to login on the deficient system. Before, this attack required users
to often check if their credentials were compromised [53]. Since 2016, the General Data
Protection Regulation (GDPR) requires the authentication system operator to warn the
users about this kind of events [51].

Session hijacking. While many attacks exist to target the authentication process of a
website, session hijacking is a different attack. Once a user has authenticated, her valid
authentication attempt is kept under a session state that allows the website to know
the user owning this session already successfully authenticated previously. Technically
speaking, the session state is kept in cookies. In this context, the goal of the session
hijacking attack is to intercept the cookies owning the session state to gain access to the
session of the targeted user. Several techniques can be used to steal these cookies, such
as:

2.2 Web authentication 13

• Network monitoring: The attacker reads the network traffic and collects the desired
information,

• Cross-site scripting (XSS): An attacker attacks the website and gain the possibility
to send malicious JavaScript code in the targeted website, and use it to access
the cookies of the users.

Sivakorn et al. [138] studied the impact of the session hijacking attack against major
services. During 30 days, they collected data from a network tap and found 29M requests
were exposed, concerning 282, 000 accounts. They showed several major services were
vulnerable, such as Google, Youtube, or Amazon. They also studied the defenses proposed
by browser vendors, and found they can reduce the attack surface, yet not offering a full
protection.

Bots. In a web context, a bot is an automated software that browse the Web. Several
bots have legitimate goals, such as search engine bots. These are bots used by search
engines to crawl and index pages and websites [52, 29, 69]. However, many bots on the
Web have malicious purposes, being designed to steal data or cause damages to systems.
For example, spam bots can be used to harvest emails from websites and contact lists
and send spam or phishing emails [81]. Bots can also be used to perform DDoS attacks,
or automate the attacks we described previously, making them more dangerous because
they can target many users is a short period of time. It is estimated malicious bots
represent 25% of the web traffic in 2020 [11]. It highlights the threats bots represent on
the Web.

Because of the multiplication of threats on the Web, many security improvements and
defenses were proposed and implemented to protect users against them. The remainder
of this section presents these improvements and defenses.

2.2.3 Protecting data access
Encryption. The first defenses concern the way data is sent on the Web. First, the
HTTPS protocol intends to use the TLS/SSL encryption technology over the classic
HTTP protocol [56]. It allows users to exchange data under an encryption layer that
protects against cookie hijacking and other threats. Felt et al. [98] measured the current
adoption of HTTPS on the Web. They collected data from Chrome and Firefox users
from 2014 to 2017, and showed the proportion of pages loaded under HTTPS keeps
growing, and reached 58− 90% on Chrome depending on the OS used, and 50-57% on
Firefox. They also measured disparities according to the region and country of the user.

In addition to HTTPS, The HTTP Strict Transport Security (HSTS) header has
been designed to use HTTPS by default. HSTS is an HTTP header a server adds to its
response. It tells the client to always reach it with HTTPS for a certain period of time.

14 State of the Art

The browser receiving the response will store this information and will send the future
requests to this domain directly with the HTTPS. Felt et al. [98] showed the HSTS
header is only available on 3% of websites on the Alexa Top 1M .

Restricting cookies access. Browsers also implemented several defenses to protect
cookies against interception and other malicious usages [57]. The Secure cookie response
header allows websites to define cookies that must only be sent over HTTPS, preventing
the interception of cookies via network monitoring. Websites can use the instruction
HTTPOnly that will prevent the access of cookies via JavaScript, preventing them
from being stolen via XSS attacks. Finally, websites can use the Domain, Path, and the
experimental SameSite instruction to restrict the access of cookies and protect against
CSRF attacks.

2.2.4 Bots protection techniques
Due to the growing importance of bots, several measures tend to control their possibilities
and defend against them. The robots.txt file allows websites to define a list of folders
and files crawlers and bots should not access. Bots should first read the content of this file
and adapt their behavior accordingly before starting crawling and indexing the website.
While search engine bots often respect the instructions of the robots.txt file [52, 29, 69],
nothing forces them to do so. Additionally, the robots.txt file is available publicly and
malicious agents can see if a website wishes to protect resources against crawlers.

IP address reputation. Bot detection techniques can refer to the reputation of IP
addresses to classify users. Previously, bots were often run behind proxies and specific
IP addresses that were easy to detect and block. Now, bots often use many IP addresses,
including residential ones that have an excellent reputation. This evolution highlights
the limits of this technique.

Traffic analysis. Other techniques analyze the behavior of users to detect suspicious
behaviors that could be the work of bots. They monitor the server logs as well as the
user interactions, such as mouse movement or keyboard usages to detect suspicious
behaviors [109], such as too many pages browsed in a limited period of time or an absence
of mouse movements or click. However, these techniques need a large amount of data
before being able to accurately classify the traffic.

Captchas. They are Turing tests that aim at distinguishing bots from humans.
When a website has some doubt about the nature of a user, it can expose a captcha to
the user whose goal is to solve it. If she can, she is considered as a human, otherwise
she might be a bot. Several techniques exist and propose various tests to the user. 3
techniques are presented in Figure 2.3: a textual captcha, a Google’s reCAPTCHA,
and a Geetest captcha. However, the technique is subject to shortcomings. i) First,
Bursztein et al. [91] found that users might fail solving captchas. ii) Second, and more

2.2 Web authentication 15

(a) A textual captcha

(b) A Google recaptcha
(c) A geetest captcha

Figure 2.3: Examples of captcha techniques

important, Sivakorn et al. [139] showed in 2016 that it was possible to solve Google’s
reCAPTCHA automatically, again questioning the efficiency of the technique.

2.2.5 Improving authentication

2.2.5.1 Strengthening password creation

As passwords are the most dominant authentication factor, a common technique to
improve security of an authentication system relies on the strengthening of the password
creation rules. Shay et al. [137] conducted a study of 470 students and staff belonging to
the Carnegie Mellon University (CMU) to measure their opinion about the new password
policy of the University. The University system used to have no rule when creating
a password. The University updated its policy and the rules to create and update a
password:

• The new password must contain at least 8 characters, and include at least one
upper-case letter, one lower-case letter, one digit and one symbol,

• After removing the non-alphabetic characters, the password cannot match a dictio-
nary word,

• The password cannot contains 4 occurrences or more of the same character.
In their response, participants say they needed an average of 1.77 tries to create this new
password and estimate at 1.25 the number of attempts to authenticate on the system.
Similarly to the study presented in Section 2.2.1.2, more than 80% of the participants
admit to reuse passwords in different authentication systems. They also studied the
values of password thanks to the answer of the participants. In average, the passwords
contain 10.49 characters, which is more than the requirement of 8 characters. They are
formed by 5.94 lower-case letters, 1.54 upper-case letters, 2.70 digits, and 1.70 symbol.

16 State of the Art

While the strengthening of the password creation rules is crucial for security, several
attacks and threats presented in Section 2.2.2 collect the complete password, such as
phishing or data leak. In this context, the single use of password exhibits several flaws.

2.2.5.2 Multi-Factor Authentication

Multi-Factor Authentication (MFA) aims at fixing these flaws. Instead of relying
on a single authentication factor, MFA leverages additional factors to enhance web
authentication [128]. During a web authentication attempt, each factor must be verified
to validate the identity of the user. The authentication system can use as many factors
as necessary—2 factors (2FA), 3 factors (3FA)—but has to find a good balance between
user experience and security. If the actions required to authenticate are too complex or
too numerous, users will become uncooperative to adopt the authentication scheme.

Authentication factors can be divided into 3 main categories:
• Knowledge factor : This is something the user knows, such as a password;
• Ownership factor : This is something the user owns, such as an email account, a

smartphone or a physical token. To authenticate and prove that she owns this
factor, she is often provided a code received on the factor. It can be sent by SMS
or via a smartphone application to prove the user owns a mobile phone, or by
email to prove she owns the email. The code is often called a One-Time Password
(OTP), which is only valid for this specific authentication attempt, often with a
short validity duration period. When typing this code on the authentication page,
the server compares the submitted code to the one sent on the factor. If it matches,
then she can authenticate;

• Inherence factor : This is something the user is. She does not have anything to
do to get this factor because it is based on the nature of the user. It concerns
properties of the user, such as a biological fingerprint, or a behavior pattern. These
systems often require specific scanners to collect the property of the user during an
authentication attempt. This category also includes factors concerning the context
of the authentication attempt, such as the IP address of the user.

All the factors presented above do not improve the security in the same ways, and
have different impacts on the user experience. Some factors, such as behavior patterns
or based on the context of the authentication attempt, are called implicit because they
do not require a user-specific action to be collected and verified and do not cause a
degradation of the user experience during the authentication attempt. By opposition,
many factors are said to be explicit because they require an action of the user to be
collected—typing a password, a OTP, putting a finger on the fingerprint scanner. Explicit
factors are often more secure than implicit factors because they cannot be collected
as easily, meaning an attacker must rely on a user interaction to collect the explicit
factor. Because of this user interaction, the usage of an explicit factor degrades the user

2.2 Web authentication 17

experience. The main challenge for authentication systems relies on the balance between
a security improvement and a user experience degradation.

Authentication systems can integrate factors in an immediate or delayed mode. An
immediate factor will be verified during the authentication attempt, while a delayed
factor will be checked during the session duration. To minimize the impact on the user
experience, the implementation of a factor in a delayed mode often implies the use of an
implicit factor, such as an IP address check.

Ometov et al. [128] discuss and evaluate the current state of the art of the factors
being used in authentication systems. They compared a list of 16 authentication factors
on 6 properties: i) Universality - the factor is present for each user, ii) Uniqueness,
iii) Collectability, iv) Performance, v) Acceptability, vi) Spoofing. As we explain above,
the factors that are easy to setup and use (password, token) are the ones considered as the
most easily spoofable. Oppositely, the factors that offer high uniqueness (ocular-based,
electrocardiographic recognition, DNA recognition) suffer from low collectability.

Adoption of MFA Several studies tried to quantify the adoption of MFA on the Web.
In 2015, Petsas et al. [129] studied 100, 000 Google accounts and measured an adoption
of 2FA of only 6.4%. Quermann et al. [131] studied the mechanisms used by 48 different
services on the Web. First, they observed usernames are the most common identifier
(65%), followed by email addresses (45%). While the primary authentication factor is a
password or a PIN code—or a combination of both—they measured 7 different additional
factors in the systems they studied: i) an SMS code, ii) a code received via a code
generator application installed on a smartphone, iii) an offline code, iv) a smartphone
notification, v) a U2F key, vi) a key fob, also named a token, and vii) a biometric proof.
They showed the most implemented factors are the SMS code, the generated code and the
smartphone notification. They observed a specific behaviour when analyzing the systems
set-up by German banks. They found the second factor is only required when performing
sensitive operations, such as transferring money, but is not necessary when performing
read-only operations, such as checking account balance. Concerning the recovery of
the factors, they observed the most used technique to recover the primary factor—the
password—is the recovery via an email, where the user is either provided a code to enter
on the website or a link which directly provides a form to update the password. The
recovery of the second factor is often performed via contacting the support. It has a
strong impact on the user experience, as the user has no guarantee to receive a quick
response. Otherwise, the researchers measured websites often rely on another factor. For
example, a user can use an SMS OTP to generate back her offline codes.

18 State of the Art

2.2.5.3 Risk-Based Authentication

Risk-Based Authentication (RBA) is a dynamic authentication scheme where the
context of the authentication attempt is taken into consideration. It is analyzed and
compared to the regular context used by the user to authenticate. Given this information,
the system evaluates the risk for this authentication attempt to be fraudulent. If the
risk is too high, the system can require the user to provide an additional authentication
factor to validate the authentication attempt. Several features can be used to perform
RBA, such as: i) The IP address, ii) the HTTP headers (User-Agent, Language), iii) the
display resolution, iv) the authentication time, v) canvas fingerprinting.

RBA aims at being implicit: it does not require specific user interaction nor to
degrade the user experience, but collects information that can distinguish a suspicious
authentication from a regular one. Thus, it increases security while having a much more
limited impact on the user experience than MFA.

Evaluation Wiefling et al. [155] investigated the adoption of RBA on 8 high-traffic
online services: Amazon, Facebook, GOG.com, Google, iCloud, LinkedIn, Steam, and
Twitch. They designed 28 virtual identity and created 224 user accounts. They measured
the risk levels were computed differently according to the website. GOG.com asked for
an additional authentication factor as soon as the IP address was different while Google,
Amazon or LinkedIn asked for it when the IP address was coming from a different country
than the original authentication. They also tested several combinations of features, and
observed the IP address is the most used feature to consider the risk of an authentication
attempt, followed by the User-Agent string. They also observed that the email and SMS
OTP were the additional factors used the most by websites when the authentication risk
was considered too high.

Wiefling et al. [154] also conducted a usability survey of RBA on 65 users. They
designed a website that proposes 4 types of authentication schemes to the users:

• Password-only,
• 2FA, which asks the user for its password and a code sent via email,
• RBA-location, which uses only a password if the location of the device used for the

authentication attempt has been used before. Otherwise, it uses 2FA.
• RBA-device, which uses only a password if the device used for the authentication

attempt has been used before. Otherwise, it uses 2FA.
Their users found the 2FA much more annoying and tiring than RBA-location or RBA-
device based, with respectively 56% versus 13%/0% and 44% versus 6%/13%. Out of the
3 solutions proposed to enhance password-only, users preferred the RBA-location (94%
of acceptance) than RBA-device (87%) and 2FA (75%). They also found large disparities
concerning the user acceptance responses for different website categories. Users were
much more disposed to accept any of the 3 solutions on a banking website than a social

2.3 Browser fingerprinting 19

network. One of the reason advanced for these answers are the level of trust in the
website: people tend to trust much more a banking system than a social media website.
When asked about the perception of the security level provided by the 4 authentication
schemes, users were more satisfied with the 2FA (94%) than the RBA-device (87%), the
RBA-location (75%) and the password-only scheme (23%). Their global results perfectly
illustrate the balance to find between security and user experience.

2.3 Browser fingerprinting

2.3.1 Definition
A Browser fingerprint is a stateless and permissionless technique that can identify a
browser [116]. Cookies and other stateful techniques generate an identifier on the server-
side and use a storage available on the client side to store it. It means the identification
technique relies on the state of the storage used. Because a browser fingerprint is formed
by collecting information about the user’s browser, it does not require to generate and
store an identifier.

In this manuscript, the terms browser fingerprint and fingerprint represent the
set of attributes forming the fingerprint and can be used interchangeably. The terms
browser fingerprinting and fingerprinting represent the whole technique used to collect a
fingerprint. When it comes to the goal of the technique, I sometimes stated that it can
identify a user. Browser fingerprinting collects information about the browser and the
device on which it is installed, but also collects information about the configuration of
the user. While these information are insufficient to identify a single user, they provide
an added value that helps to distinguish similar browser instances.

The attributes forming a fingerprint are in majority properties and information
accessible via JavaScript. To collect the fingerprint of a user, the server needs to load
a script besides the HTML page returned to the user. Once the script is loaded, it
accesses the properties and functions required to form a fingerprint. After the collection,
the script can either perform some treatment on the client side or send the fingerprint to
the server for backend processing.

2.3.2 Properties
To be effective at identifying, the fingerprint needs to have the following properties:

• Uniqueness: Because stateful identification techniques generate the identifier that
will be stored on the client’s device, they can ensure the identifier will be unique
among all their users. As browser fingerprinting relies on the information gathered
on the user’s browser, it does not have this possibility. Instead, its goal is to
collect information that identify the device of the user: not only her browser, but

20 State of the Art

also her OS, her hardware components, and so on. By collecting attributes giving
information about various parts of the device, the uniqueness will increase.
To measure the uniqueness of an attribute, studies use the entropy as a reference
measurement unit for the attribute values. In computer science, entropy consists
in measuring the number of bits necessary to represent data. For example, if there
are 536 possible data values for a given attribute, the associated entropy is 9.06878.

• Stability: Stateful identification techniques can rely on their identifier until it
has either expired or been removed by the user. A browser fingerprint is more
volatile. It evolves due to changes in the user configuration, browser updates or
other events. This will change the value of some attributes and make the fingerprint
looks different from the one collected before the changes. As stability is essential for
identification techniques, browser fingerprinting aims either at collecting attributes
that remain stable for a long period of time or being able to link a fingerprint with
its evolution.

Depending on the final use of browser fingerprinting, some properties might not
be necessary anymore while browser fingerprinting might respect new properties to
be efficient. In this manuscript, I consider by default the uniqueness and stability
properties for the browser fingerprinting technique. When discussing specific uses of
browser fingerprinting, I will clearly explicit the new properties required by browser
fingerprinting.

2.3.3 Attributes

In this section, I present the attributes composing a browser fingerprint.

2.3.3.1 HTTP Headers.

Some information is sent within HTTP request and contains useful information for the
server to understand what type of device made the request, how the response should be
sent, or which languages the user prefers. Consequently, configuration changes in the
device or browser impact these headers, and the information in the headers has high
entropy, meaning they are highly discriminating [117]. HTTP headers are sent by all
browsers and can easily be collected by servers, making them ideal attributes to use in a
browser fingerprint. HTTP headers are defined in the Chapter 5 of the RFC 7231 [71]. I
present the main HTTP headers used for fingerprinting, sorted by alphabetic order:

Accept. Indicates the Multipurpose Internet Mail Extensions (MIME) types ac-
cepted by the browser. The values are ordered by preference with quality information,
represented in the header with the q letter. Examples of values are given below.

2.3 Browser fingerprinting 21

Accept header value Source
text/html,application/xhtml+xml,application/xml;q=0.9, Chrome 73 on Windows 10image/webp,image/apng,/;q=0.8

text/html,application/xhtml+xml,application/xml;q=0.9, Firefox 66 on Ubuntu 18.04*/*;q=0.8

Accept-Encoding. Indicates the data encodings supported by the browser.

Accept-Language. Indicates the list of languages the user prefers. Similarly to the
Accept header, each value comes with a quality value q between 0 and 1. The quality
value indicates the user’s languages order preference the server should try to respect.
The table below provides value examples for this header.

Accept-Language header value Description
zh-CN, zh; q=0.8, ru-RU, ru; q=0.6 Chinese preferred, then Russian

fr-FR, fr; q=0.8, ja; q=0.6, en-US, en; q=0.5 French preferred, then Japanese,
then American English or English

DNT. This header represents the user’s Do Not Track setting. The value is set to 1 if
the user does not want to be tracked, 0 otherwise.

User-Agent. This parameter contains the browser name, browser version, OS name,
OS version and can contain additional information about the hardware or engine used
depending on the device. The table below contains a list of User-Agent that can be
found in the wild.

User-Agent header value Source
Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 Chrome 73 on Windows 10(KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36

Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:66.0) Firefox 66 on Ubuntu 18.04Gecko/20100101 Firefox/66.0

Mozilla/5.0 (Linux; Android 7.0; SM-A510F Build/NRD90M)
Opera 51 on Android 7.0AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121

Mobile Safari/537.36 OPR/51.2.2461.137690

Mozilla/5.0 (PlayStation 4 5.55) Playstation 4AppleWebKit/601.2 (KHTML, like Gecko)

22 State of the Art

Beyond the values exposed by headers, several studies [96, 145] demonstrate the order
of these headers depends on the browser implementation and can be used to verify a
browser is the one it pretends to be.

2.3.3.2 JavaScript Fingerprinting

A) Browser properties. The majority of the attributes are available via JavaScript.
I present these attributes grouped by the JavaScript parent object exposing the
information.

Navigator object. Mulazzani et al. [123], Nikiforakis et al. [125], and Acar et al. [84]
showed that the order of the properties of the navigator object, as well as the presence
and absence of features, can be used to fingerprint the browser and its version. While
this technique does not bring additional information compared to the User-Agent, it
can be used to verify the nature of the browser.

navigator.appCodeName. Returns the code name of the browser, which is now Mozilla
for every modern browser.

navigator.appName. Returns the name of the browser, which is now Netscape for
every modern browser.

navigator.appVersion. Returns the version of the browser.

navigator.buildID. Returns the build identifier of the browser. This property is now
set to a fixed value in all major browser for privacy reasons.

navigator.cookieEnabled. Returns a boolean which indicates whether cookies are
enabled or not.

navigator.deviceMemory. Returns the amount of memory on the device, in gigabytes.
This property is only available on Chrome 63 or higher, and Chromium-based browsers.

navigator.doNotTrack. Returns 1 if the user has requested not to be tracked via the
Do Not Track setting, 0 otherwise. This value should be equal to the one given by the
HTTP header. The parameter is available in Safari and Internet Explorer by
calling window.doNotTrack.

2.3 Browser fingerprinting 23

navigator.getBattery. Returns an object containing information about the battery,
such as the charging, chargingTime or level properties. The fingerprintability of the
battery object has been explored by Olejnik et al. [127].

navigator.hardwareConcurrency. Returns the number of logical processors available
in the browser.

navigator.language. Returns the first string of the navigator.languages property.

navigator.languages. Similar to the HTTP header Accept-Language, it returns a
list of languages representing the user’s preferred languages. Contrary to the header, it
does not contain the quality values but the list is ordered.

navigator.maxTouchPoint. Returns the maximum number of touch contact points
supported simultaneously by the device.

navigator.mimeTypes. Returns an array containing the MIME types supported by
the browser. For each MIME type, it gives information about the type supported, a
description and the filename associated with the type. An example is given in the table
below.

Description Suffixes Type
Shockwave Flash swf application/x-shockwave-flash
Shockwave Flash spl application/futuresplash
Silverlight Plug-In application/x-silverlight-2
Silverlight Plug-In application/x-silverlight

navigator.platform. Returns the platform the browser is running on. While the
information is redundant with the OS element contained in the User-Agent parameter,
it can be used to verify the consistency of the OS claimed.

navigator.plugins. Returns the list of plugins installed in the browser [120, 96].
For each plugin, it provides the plugin name, version, description and the filename
associated. This attribute is one of the most unique, with an entropy between 9.4 and 15
bits [96, 117, 103].

navigator.product. Always returns Gecko for every modern browser.

24 State of the Art

navigator.userAgent. Returns the user agent of the browser, which is the same string
as the one sent in the HTTP headers.

navigator.vendor. Returns the vendor of the browser.

Date.getTimezoneOffset(). Returns the difference between the UTC timezone and
the timezone of the user, in minutes.

MediaDevices.enumerateDevices(). Returns a list of the available media inputs
and outputs of the device, such as a camera or a microphone. The API does not require
any permission to collect this information, but provides additional information, such as
the media full name if a media is active or if the media permissions are granted.

Screen and window size properties. The browser exposes several properties to
measure the page, window, and screen sizes. For example, window.innerWidth and
window.innerHeight returns the width and height of the visible content of the browser
page. The complete list of properties used in a browser fingerprint is available through
the screen and window objects. The figure below presents these properties and their
signification.

window.innerWidth

screen.width &
screen.availWidth

screen.height &
screen.availHeight

window.outerHeight window.innerHeight

Bot detection attributes. In 2019, Jonker et al. [111] showed the presence of specific
attributes could tell if a browser was driven by an automated tool. Such attributes are

2.3 Browser fingerprinting 25

JavaScript properties or functions that are added by the automated tool in the browser.
Thus, these properties are accessible via the window objects. Examples of added properties
are: callPhantom or _phantom by PhantomJS, _selenium or selenium_unwrapped
by Selenium and __nightmare by Nightmare.

Sensors objects. Bojinov et al. [90] showed it is possible to use a device’s accelerometer
and sensors to fingerprint a user. The presence or absence of specific sensors also provides
information about the nature of the device. Currently, it is possible to check for the
presence or absence of an accelerometer, a gyroscope, a magnetometer, a proximity
sensor, and a touch device. The following code checks the presence of a gyroscope and a
proximity sensor on the device.

1 if (typeof Gyroscope === " function ") {
2 // Gyroscope exists on the device
3 }
4
5 if (" ProximitySensor " in window) {
6 // Proximity sensor exists on the device
7 }

B) Rendering APIs. Browsers implement rendering APIs to display advanced rep-
resentations of content to users. In the context of browser fingerprinting, rendering can
produce a wide diversity of side effects that are interesting to analyze in order to capture
the true nature of the browsing environment.

Font detection. The list of fonts installed on a user’s device used to be accessible to
the server through the Fonts.enumerateFonts Flash API. It was one of the most unique
attributes with an entropy between 8 and 14 bits [96, 117, 103]. Since Flash became
deprecated and browsers started to disable Flash by default [43, 74], this technique
has become near useless. To compensate for the loss of Flash and the fonts list, a new
technique to detect fonts was proposed in 2013 by Nikiforakis et al. [125], namely font
enumeration. It relies on the fact that font glyphs are rendered with different dimensions
according to the environment (OS, browser, etc.). The technique is organized as follows:

1. The script renders a text with a fallback font in a span HTML tag, and measured
the width & height of the span;

2. Then, the script renders the same text with the to-be-tested font followed by the
font previously used, which will be the fallback font. Similarly, it measured the
sizes of the span;

3. If the sizes are different from the sizes measured with the fallback font, it means
the to-be-tested font was used to render the text. Then, the font is available on

26 State of the Art

the system. If the sizes are equal, it means the font used to render the text was
the fallback one, hence the to-be-tested font is not present on the system.

As the measured sizes of the to-be-tested font can be similar to the ones measured with
the fallback font, it can lead to a False Negative (FN). Scripts can use several fallback
fonts to avoid this problem. The results can also vary according to the size of the text.
A larger rendered text will have more specific sizes, the risk of having false negative will
drop, and the quality of the results will increase. A single test is invisible and fast, and
can say if a font is installed, but also distinguish several fonts or several versions of the
same font. However, this technique tests one font at a time, contrary to Flash that
used to give the full list of installed fonts. The following code tests the presence of the
Baskerville font while using the DejaVu font as a fallback.

1 const fallbackFont = ’DejaVu ’;
2 const toBeTestFont = ’Baskerville ’;
3 const testSize = ’72px’;
4 const testChar = ’A’;
5 const h = document.getElementsByTagName (’body ’)[0];
6
7 // create a span element
8 const s = document.createElement (’span ’);
9 s.style.fontFamily = fallbackFont;

10 s.style.fontSize = testSize;
11 s.innerText = testChar;
12
13 // Measure the size of the span element with the fallback font
14 h.appendChild (s);
15 defaultFontWidth = s.offsetWidth;
16 defaultFontHeight = s.offsetHeight;
17 h.removeChild (s);
18
19 // Measure the size of the span element with the to-be-tested font

and compare to the sizes given with the fallback font
20 s.style.fontFamily = toBeTestFont + ’,’ + fallbackFont;
21 h.appendChild (s);
22 const fontIsPresent = (s.offsetWidth !== defaultFontWidth ||

s.offsetHeight !== defaultFontHeight);
23 h.removeChild (s);
24
25 console.log (fontIsPresent);

Since this technique was discovered, one of the main challenge was to find a small subset
of fonts that can uniquely identify most browsers. This is a difficult test in practice
because, contrary to the list of fonts available via Flash, this technique requires to test
the fonts one by one, which can be a long process if the script is checking thousands of

2.3 Browser fingerprinting 27

fonts. Consequently, the entropy of this attribute will vary a lot depending on the list of
fonts.

Fonts rendering. Fifield et al. [99] aim at fingerprint users with font metrics. Rather
than measuring the presence or absence of a font on a system, they showed similar fonts
were rendered differently on different devices. They tested the rendering of 125,000
different Unicode characters on more than 1,000 browsers. Each character was drawn
using the five generic CSS font families (sans-serif, serif, monospace, cursive,
fantasy). They showed that 34% of the browsers in their dataset had a unique way of
rendering the glyphs. The study revealed that they could deduce the same amount of
information with just 43 characters, instead of 125,000, making the test much faster.
Their results also highlighted that the most unique glyphs are the most recent ones such
as the Indian rupee sign (U+20B9) or the Turkish Lira sign (U+20BA), because their
design include more graphical elements that, once rendered, appear to be more unique. It
implies this technique could become more effective as new glyphs are added into Unicode
in the incoming years.

Emojis rendering. Emojis are Unicode characters that are included in fonts and
designed to be rendered as a single glyph [32]. Not all fonts provide emojis, and some
systems might not include any fonts that properly support emojis [68]. Furthermore, the
rendering of an emoji differs depending on the font, its version, the operating system,
the browser, or the graphical libraries [117]. Thus, it is possible to check the presence
of a font with emojis by using the font enumeration technique, or to include the emoji
in a canvas (see below) and get the value of its rendering using the toDataURL() or
getImageData() functions.

Canvas. The HTML5 canvas API provides a drawing context on a canvas tag. It can
be used by scripts to draw 2D shapes and render textual content directly in the browser
by using the graphical capabilities of the device. The server can tell the browser to render
graphical instructions and return the binary value of the rendered image. This allows
the server to verify the image and search for pixel differences, or simply hash the image
to create an identifier.

Canvas was first studied as a fingerprinting element by Mowery et al. [122]. In their
study, they performed tests by writing several sentences with specific fonts, font sizes and
font styles, as well as a final test that leverages WebGL, an API similar to the canvas
API but that allows drawing 3D shapes. They collected data on 300 users and their study
shows many differences across users. They obtained around 45 to 50 unique values for
each test, which means this fingerprinting technique contains a lot of entropy. Because
canvas was shown to be very unique among a large dataset, it has since been used in

28 State of the Art

many studies. The drawing primitives have also become more complex and include more
elements like colors or emojis [117, 19, 103].

The JavaScript code presented below asks the browser to render graphical instruc-
tions that are commonly used for fingerprinting, which generates the image below.

1 const canvas = document.createElement (’canvas ’);
2 canvas.height = 60;
3 canvas.width = 400;
4 const canvasContext = canvas.getContext (’2d’);
5 canvas.style.display = ’inline ’;
6 canvasContext.textBaseline = ’alphabetic ’;
7 canvasContext.fillStyle = ’#f60 ’;
8 canvasContext.fillRect (125 , 1, 62, 20);
9 canvasContext.fillStyle = ’#069 ’;

10 canvasContext.font = ’11pt no-real-font-123 ’;
11 canvasContext.fillText (’Cwm fjordbank glyphs vext quiz , \ud83d\

ude03 ’, 2, 15);
12 canvasContext.fillStyle = ’rgba (102 , 204, 0, 0.7) ’;
13 canvasContext.font = ’18pt Arial ’;
14 canvasContext.fillText (’Cwm fjordbank glyphs vext quiz , \ud83d\

ude03 ’, 4, 45);
15 canvasData = canvas.toDataURL ();

In 2016, Bursztein et al. [92] used the canvas API to conduct a large study to attempt
to identify devices families—by opposition to individual devices. They collected 52
million canvas fingerprints that used four drawing primitives (circle, font, bézier curves,
and gradients). They were able to distinguish devices across OS families—Windows,
Mac OS, Linux, iOS—and across browser families—Chrome, Firefox, Safari. They use
this knowledge to identify automated browsers that were using PhantomJS to attack
Google web accounts.

WebGL. The WebGL API enables the rendering and manipulation of dynamic 3D
objects based on the canvas element. It exposes information about the graphical stack
of the device to help developers adapt their code to the user device. Two attributes
are specifically used in browser fingerprinting, WebGL vendor and WebGL renderer.
The WebGL vendor returns the name of the GPU vendor. The following values
can be found in the wild: Intel Open Source Technology Center, Google Inc. or
ARM. The WebGL renderer returns the name of the GPU renderer. The following
values can be found in the wild: Mesa DRI Intel(R) Sandybridge Mobile, NVIDIA

2.3 Browser fingerprinting 29

Quadro K4000 OpenGL Engine, Mali T-720 or ANGLE (NVIDIA GeForce GTX 750 Ti
Direct3D11 vs_5_0 ps_5_0)

The WebGL API also provides a 3D drawing context. The approach is similar to the
one used to perform canvas fingerprinting: rendering objects is a complex and difficult
task and is based on several hardware and software layers—such as the browser, the OS,
the drivers, as well as a graphics card. Thus, sending the same set of drawing instructions
to devices with different graphic hardware and software components produces different
output values. Laperdrix et al. [117] explored the use of the WebGL API for fingerprinting,
but did not succeed because the 3D canvas they generated were not stable enough to
be integrated into a fingerprint. More recently, Cao et al. [93] showed it was possible to
generate unique and stable 3D scenes using the WebGL API. They proposed a set of 19
different 3D scenes by varying shapes, models and textures with additional effects on
light or camera. Their results show the more complex the 3D scene is, the more unique
the values are. The entropy of each scene varied between 1 and 7 bits, but by combining
them, they were able to uniquely identify more than 99% of the users. However, their
evaluation was conducted using only 3 600 fingerprints, and long-term stability is not
well understood. The image below presents some of the scenes they generated.

Audio. In 2016, Englehardt et al. [97] crawled the Alexa Top 1M and discovered
fingerprinting scripts that processed an audio signal generated by the browser to create
an audio fingerprint. This technique is similar to canvas or WebGL fingerprinting because
it asks the browser to render an element based on instructions and collect the output.
Depending on some hardware or OS feature, the result will differ from one device to
another. The researchers built a website to collect data about audio fingerprinting [10].

30 State of the Art

Out of over 18,500 different submissions, 713 were unique. They estimated the entropy
of this technique at 5.4 bits.

WebRTC. In the same study, Englehardt et al. [97] also discovered that fingerprinting
scripts were using the WebRTC API to collect the public IP address of users behind a
VPN or a NAT.

C) Extensions detection. Browser extensions are add-ons installed in the browser
that personalize the user’s browser. Extensions can add styles to webpages, customize
the interface of the browser or add privacy and security functionalities. Starov et al. [142]
monitored the changes that extensions inject into the DOM (Document Object Model)
when interacting with the page. Among the Top 10,000 Chrome extensions, 9% of them
interacted with the DOM. With a specifically structured DOM, a webpage can infer these
extensions from their interactions. Moreover, they collected the configuration of 854 users
and showed that 14% of them had a unique combination of browser extensions. This
observation shows that the list of browser extensions could be used as a fingerprinting
feature.

Sjosten et al. [140] proposed another approach to detect browser extensions. They
focused on the WAR files (Web Available Resources) that extensions load or use, such
as images. By testing the presence of these resources on the local file system, it is
possible to check if an extension is installed. They downloaded and tested resources for
more than 43,000 Chrome extensions and 15,000 Firefox extensions. In total, 12, 000
Chrome (28%) and 1, 000 Firefox (6.73%) extensions could be identified using resource
detection. They also observed that the more popular the extension is—based on the
number of users—the more it is likely to be detected. Gulyas et al. [104] used this attack
to perform a large-scale analysis on 16, 000 users. They found 55% users has installed
at least one detectable extension and 18% of the users have a unique set of installed
extensions. Mozilla fixed this attack in 2017 by randomizing the extension ID when it is
installed in Firefox [50]. On its side, Chrome proposed a new version of the extension
manifest.json file, which allows better control over the WAR files that are exposed [21].

Laperdrix et al. [118] presented and evaluated a new technique to measure the browser
extensions installed by users. They relied on the CSS injected by extensions in a webpage
that can modify components, such as divs or buttons. The used the JavaScript function
window.getComputedStyle that returns all the CSS properties applied to the targeted
element. By comparing the final style of the element and its original value, a script is able
to tell if the style has been modified, hence if it has been altered by an installed extension.
They analyzed 116, 000 extensions for the Chrome Web Store, reported more than 6, 500
extensions injected style sheet on pages, and demonstrated they could uniquely identify
4, 446 of them.

2.3 Browser fingerprinting 31

Karami et al. [112] proposed 2 new extension fingerprinting vectors: i) Interception
of messages sent from an extension content script and a webpage script, ii) Resources
enumeration via HTTP request monitoring. They developed Carnus, a software system
to automatically perform static and dynamic analysis on browser extensions. They fed
it with more than 29, 000 extensions to measure the vulnerability they defined. They
found browser extensions detection techniques are complementary: some techniques can
identify an extension while other techniques were unable to.

D) Timing attacks. The goal of timing attacks is to analyze the time taken to
perform an operation and use that to infer information. Fingerprinting leverages timing
attacks to identify hardware components of the device.

Sanchez et al. [136] used this technique to distinguish devices based on a set of CPU-
intensive operations. They performed a basic cryptographic operation, generated random
values, and repeated the operation dozens of thousands of time. By measuring the small
differences between the execution times, and due to processor clock imperfections from
production, they claim to extract stable and unique features capable of distinguishing
otherwise identical devices—same OS, same hardware. The study was conducted on
a set of 176 identical computers. However, they only generated 3 fingerprints from
each computer (528 fingerprints in total), and did not look at consistency over time.
Furthermore, their best results were based on a prototype built in C, and although they
claim that this extends to the cryptography APIs added to browsers, it is unclear from
their paper and the results of their prototype in JavaScript how true this is. Finally,
due to the Spectre and Meltdown attacks, the precision of several JavaScript timers
has been reduced [59, 18]. In this context, I could not reproduce Sanchez’s results and
believe this attack is not usable in the current state of JavaScript timers.

Rokicki et al. [134] studied the different timing measurement techniques in JavaScript.
More specifically, they measured the efficiency of timers, including performance.now()
and SharedArrayBuffer APIs on several settings, on several browser versions and against
various countermeasures. They found the re-enabling of the SharedArrayBuffer allow
scripts to perform precise timing attacks that were mitigated before.

Timing attacks provide timing measurements that are hardly deterministic. The
techniques are often impacted by other parameters such as the CPU usage of the device or
the state of a cache, resulting in non-deterministic attributes. To succeed at identifying
users, these techniques rely on machine learning pipelines or neural networks. This
increases the elements to setup when collecting and classifying the information.

2.3.3.3 CSS fingerprinting

Another way of inferring information about the browser is to use CSS [143]. In particular,
CSS provides query strings, which are triggered whenever the associated CSS property

32 State of the Art

is applied. The code below defines 2 CSS properties, which apply on different device
pixel ratios. The URL with the corresponding device pixel ratio will be triggered, thus
informing the server about the device pixel ratio. The method does not provide additional
information compared to the attributes accessible via JavaScript (cf. Section 2.3.3.2),
but it helps to verify the information consistency.

1 @media screen and (-webkit-device-pixel-ratio: 1){
2 div#dpr{
3 background-image : url(" database.php ?dpr=1");
4 }
5 }
6
7 @media screen and (-webkit-device-pixel-ratio: 1.5){
8 div#dpr{
9 background-image : url(" database.php ? dpr=1.5 ");

10 }
11 }

Commonly used attributes. I presented in this section the different attributes that
can form a fingerprint. Some of them can be more easily collected because they do not
require a specific setup to be integrated into a fingerprinting script, or because they
provide a deterministic value that can be directly used to identify the user. Without
explicit enumeration, I will refer by the term attributes or browser fingerprinting attributes
to the HTTP headers, JavaScript browser properties and JavaScript rendering APIs
(Section 2.3.3.1 and Section 2.3.3.2 -A) and B)).

2.4 Browser fingerprinting studies

2.4.1 Measuring browser fingerprinting properties
Dedicated studies. Mayer [120] was the first to talk about the possibility of creating
an identifier from browser configurations and properties. He collected 1, 298 finger-
prints for 2 weeks by concatenating and hashing the values of the navigator, screen,
navigator.plugins and navigator.mimeTypes JavaScript objects. He was able to
uniquely identify more than 95% of the visitors in his dataset. Moreover, the number of
non-unique fingerprints—e.g. fingerprint hash collisions—are contained in small clusters.
This study was the first attempt to quantify browser fingerprinting.

Eckersley [96] built on the idea of browser fingerprinting and attempted to understand
the privacy risks more precisely. He created the https://panopticlick.eff.org website and
collected 470, 000 fingerprints in 3 weeks. His study covered the following attributes:

• HTTP headers: User-Agent, Accept and Cookies enabled,

https://panopticlick.eff.org

2.4 Browser fingerprinting studies 33

• JavaScript elements: timezone, screen resolution, plugin names and versions, and
MIME types,

• Fonts obtained via Java or Flash applets.
He measured that 83% of the browser fingerprints collected in his dataset were unique.

He also analyzed fingerprint stability to measure the long-term identification possibilities
of the technique. Although his dataset was not ideal because he only relied on cookies to
re-identify returning users, he found that 37% of the fingerprints changed within the 3
weeks.

Laperdrix et al. [117] revisited and updated the findings of the Panopticlick study
by including modern web technologies and collecting mobile devices data in 2016. They
developed a new website, https://amiunique.org, to collect fingerprints. They used all
the attributes from the Panopticlick study, with the following additional attributes:

• JavaScript browser properties: screen color depth, platform, Do Not Track, use
of an ad blocker,

• Canvas: They used primitives to write texts and draw a rectangle with colors and
an emoji,

• WebGL: vendor and renderer.
Their results concerning uniqueness were similar to the Panopticlick study. They found
that 89.4% of the fingerprints in their dataset (106, 327 fingerprints) were unique, 90%
on desktops and 81% on mobiles. However, they also went into possible scenarios that
could be used to reduce fingerprinting, including the disappearance of Flash, blocking
JavaScript, or more subtle changes, like unifying User Agents.

In-the-wild study. These three studies have one major drawback: they collect data
on a dedicated website that attracts a biased set of users. Due to the precise and technical
goal of these websites, users visiting them are often people who care about their privacy,
who are more technically capable than an average user on the web, and who are more
likely to have specific configurations, browsers or extensions to protect themselves against
online tracking. Because these kinds of behaviors are not representative of all web users,
the datasets of these websites suffer bias that is hard to study or remove.

In 2018, in an attempt to study an unbiased fingerprints dataset, Gomez-Boix et al. [103]
setup a fingerprinting script on one of the Top-15 most popular French websites. They
deployed the script on 2 pages, a weather forecast page, and a page about politics.
They collected around 2 million fingerprints by using the same set of attributes as
AmIUnique [117]. They reached a uniqueness percentage of 33.6%: 35% for desktop
devices, and 18% for mobile devices, showing a strong reduction in fingerprint uniqueness
compared to previous studies. The authors imply that fingerprinting is less of a risk
to privacy than previously thought, that previous studies were biased and the datasets
were not large enough to find fingerprint collisions. As the AmIUnique study, they also

https://amiunique.org

34 State of the Art

studied the impact of three scenarios on their dataset: the end of browser plugins, the
adherence to standard HTTP headers and the end of JavaScript. The data representing
the percentage of unique fingerprints for each scenario are summarized in the following
table:

Device type Default Plugins end HTTP headers JavaScript end
Desktop 35.7% 16.5% 31% 0.7%
Mobiles 18.5% 18% 16.2% 4.3%

The end of browser plugins decreases fingerprint uniqueness by a large amount
because this parameter is very discriminating in desktops, especially with regards to the
Flash plugin that provides a lot of information to fingerprint users. The HTTP headers
values does not add a lot of entropy, as their entropy is low compared to JavaScript
attributes. In fact, many of the HTTP header values can be retrieved with JavaScript.
Consequently, the standardization of HTTP headers does not have a huge impact. Finally,
the end of JavaScript strongly reduces the interest of browser fingerprinting, uniqueness
is severely reduced, although this is the least likely scenario to become a reality, as the
use of JavaScript-intensive websites is growing.

Controlled environment. Al-Fannah et al. [86] studied the fingerprintability of
browsers. They studied 5 desktop browsers on 2 desktop OS and 5 mobile browsers on 3
mobile OS. Their work is innovative because they studied browser fingerprinting on a
controlled environment with the ground truth concerning hardware, OS and browsers.
However, it suffers from several flaws:

• they do not study the complete set of attributes from the state of the art,
• they only focus on browser fingerprintability, but did not study other components

such as hardware, OS or browser configuration,
• their results do not measure the reasons behind browser fingerprints uniqueness

but only present a global level of fingerprintability for each studied browser.

Stability. Fingerprints evolve over time because of updates and configuration changes,
which means it can only be used to identify or track a device if a fingerprint can be linked
to its previous version. Vastel et al. [150] studied the stability of browser fingerprints over
time. They used the AmIUnique web extensions available for Chrome and Firefox
that collect the fingerprint of their users. The extension collects the fingerprint of the user
every 4 hours and links it to a unique identifier (UUID) generated during the extension
installation. This UUID will be used as the ground truth to verify the effectiveness of
fingerprint linking algorithms.

They develop 2 algorithms to link fingerprint evolutions:

2.4 Browser fingerprinting studies 35

• The rule-based algorithm takes advantage of a set of hard-defined rules to link
fingerprints. For example, one rule claims that the OS, platform and browser family
must remain the same for all the evolutions of a fingerprint. Another rule claims
that the browser version can only increase or remain identical, but never decreases;

• The hybrid-based algorithm combines the rules defined for the rule-based algorithm
and a machine learning pipeline. Based on a random classifier, this step was
integrated to measure fine-grained changes that would be difficult to identify and
track, such as font or plugin changes, timezone changes, or other hard-to-define
changes.

To evaluate the effectiveness of their linking algorithms, they introduced a few new
concepts. They created the concept of fingerprints chain, which is a list of fingerprints
that an algorithm has identified as belonging to the same browser instance. A fingerprint
chain may, of course, contain linking errors, but the UUID can be used to retrieve the
ground truth. They also propose the concept of ownership ratio, which measures the
ratio of fingerprints belonging to the right fingerprints chain.

They collected 172, 285 fingerprints from 7, 965 different browser instances over 2
years (July 2015 to August 2017). Their rule-based algorithm obtained an overall
ownership ratio of 0.977, while their hybrid algorithm obtained an ownership ratio of
0.985. They mainly highlight two takeaways from their analysis: i) There is a segment
of the population that is difficult to track for extended periods of time using only
browser fingerprinting because they use common devices, with popular browsers, and
few customizations, making fingerprint collisions more common. In their dataset, this
is close to 20% of the browser instances; ii) There is another segment, around 25% of
browser instances in the dataset, that is highly trackable and have unique fingerprints
with highly identifiable attributes. In general, these browsers could be tracked through
the entire duration of the experiment with relative ease. They hypothesize that users
that focus more on privacy and have more experience with technology, and tend to use
uncommon devices or browsers with extra customization, are those more susceptible to
fingerprint tracking.

Li et al. [119] performed a large-scale analysis to study the evolution of browser
fingerprints in the wild. They defined the term fingerprint dynamic to refer to an evolution
in the browser fingerprint. They collected common attributes defined in Section 2.3.3
from 1, 329, 927 browser instances, and measured 960, 853 different fingerprint dynamic.
They classify fingerprint dynamics into 3 categories:

• Browser or OS updates refers to a newer version of the browser or OS. Browser or
OS versions affect the User-Agent string, the canvas rendering or the font string.
In their dataset, it represents 30% of the observed dynamics, 95% of these being
iOS updates, which are reflected in the User-Agent;

36 State of the Art

• User actions refers to every action the user can take in his browser that can change
the browser fingerprint, such as zooming in the page, moving to a different timezone
or updating her configuration. These dynamics count for 31.07% of the total
number of dynamics, but only 13.4% of total browser instances generate these types
of dynamics.

• Environment updates concerns the update of software co-located with the browser.
For example, the installation or update of Microsoft Office or Adobe Acrobat
Readers might introduce new fonts on the device that can be detected through the
font enumeration technique.

They evaluated the 2 algorithms from the FP-Stalker paper [150] on their dataset.
They first measured the time taken by the hybrid algorithm to match a single fingerprint
drastically increases according to the number of fingerprints in the dataset, which reaches
1 second for around 1M fingerprint. For a tracking system which displays ads, this is
largely considered as unacceptable for an in-the-wild system. They also showed that very
few changes in the fingerprint could lead into false positive (FP) or false negative (FN).

Finally, they leveraged their observations to provide insights to develop future linking
algorithms:

• Browser fingerprints reveal privacy or security-related information,
• Several fingerprint dynamics are related, while the features which cause the corre-

sponding changes are not,
• The timing of some fingerprint dynamics are correlated with real-world events.

2.4.2 Detection and classification
Many studies measured the presence of browser fingerprinting on websites. The first of
them was the one conducted by Nikiforakis et al. [125]. They analyzed the code of 3
popular fingerprinting script providers: BlueCava, Iovation, and ThreatMatrix. They
studied the attributes collected by the scripts generated by these providers and showed
they access similar set of attributes. They analyzed the presence of these scripts by
crawling the Alexa Top 10k and found 40 websites that were using one of these scripts.

Acar et al. [85] designed FPDetective, a framework to detecting browser fingerprinting
on the Web. They focused on scripts performing font detection, either via Flash, or
via the span measurements technique. More precisely, they considered the script was
doing fingerprinting if: i) The Flash file requests the set of fonts, or ii) the enumeration
via the span technique was performed on at least 30 fonts. They crawled the Alexa Top
1M and found 6 websites using Flash font detection on 69 websites, and 13 scripts
performing font enumeration on 404 websites.

Acar et al. [84] crawled the home pages of the Alexa Top 100k to measure the
collection of the canvas attribute. To avoid detecting canvas uses that are not related
to fingerprinting, they included rules into their crawlers: i) the rendering and getting

2.4 Browser fingerprinting studies 37

functions must be called from the same URL, ii) the canvas should contain more than
one color and be bigger than 16x16 pixels, and iii) the image content should be required
in a non-lossy compression format. They observed 5.5% of the crawled websites were
using canvas fingerprinting, 95% of them using a script from a single provider, AddThis.
They manually analyzed AddThis’s script and found additional techniques than the
ones outlined by Mowery et al. [122]. For example, the script used the perfect pangram
‘Cwm fjordbank glyphs vext quiz ’ as a text to draw in the canvas. This technique allows
the script to check-in a short string all the letters of the English alphabet. The goal of
these new additions is to check multiple drawing techniques and rendering elements to
add entropy to the canvas image returned by the canvas rendering context.

Englehardt et al. [97] went further and analyzed the Alexa Top 1M. They measured
the presence of canvas fingerprinting, font fingerprinting using canvas, and WebRTC
fingerprinting. Their results showing the percentage of websites using these fingerprinting
techniques are presented in the table below.

Rank Interval Canvas Canvas Font WebRTC
[0,1k) 5.10% 2.50% 0.60%
[1k, 10k) 3.91% 1.98% 0.42%
[10k, 100k) 2.45% 0.86% 0.19%
[100k, 1M) 1.31% 0.25% 0.06%

To avoid detecting false positive uses of canvas fingerprinting, Englehardt et al. made
the matching rules harder. Thus, the text in the canvas must be at least 10 characters
long or written in 2 colors. They observed several trends since the study conducted by
Acar et al. 2 years earlier [84]: i) the most used trackers detected by Acar et al. [84]
stopped employing the canvas fingerprinting technique, ii) the most used trackers are not
the same in the two studies, iii) the number of domains using this technique went up, as
well as the complexity and variety of the canvas fingerprints, iv) canvas fingerprinting
began being used not only for tracking, but also for fraud detection. They studied
the percentage of scripts detected earlier and blocked by several blocking tools by
comparing the performance of Disconnect, a privacy-preserving tool, to EasyList and
EasyPrivacy. The results show both solutions blocked scripts, 17.6% for Disconnect
and 25.1% for EasyList and EasyPrivacy. However, the percentage of sites with
blocked scripts was much higher, with 78.5% for Disconnect and 88.3% for EasyList
and EasyPrivacy. It also shades light on the difficulties for tracking protection lists to
keep lists up-to-date to be effective at protecting user privacy.

While the study of wellknown fingerprinters or attributes can be useful to understand
their prevalence and usage, it cannot propose an exhaustive vision of the usage of the
browser fingerprinting technique. This is due to the fact that browser fingerprinting is

38 State of the Art

permissionless and does not require any user interaction to be triggered. It is then very
easy for a script to collect attributes and form a fingerprint. Rather than studying a
set of wellknown fingerprints or attributes, the studies in the state of the art started to
propose techniques to dynamically detect scripts doing fingerprinting. They often rely
on building similarities between a ground truth of fingerprinters and the scripts collected
in the wild.

Haanen et al. [106] and Rizzo [132] both used machine learning to detect browser
fingerprinting scripts. They used static code features to train their machine learning
classifier. However, their approach suffers several drawbacks. Obfuscated code can
easily bypass this detection technique. Bird et al. [89] build a technique that group
scripts by similar JavaScript execution traces and trained a machine learning model.
They showed their technique could identify the scripts identified by existing heuristic
techniques, but also new fingerprinting scripts that were missed by previous techniques.
Still, their ground truth consists in specific attributes or keyword lists that cannot be
considered reliable when labeling a real-world dataset. More recently, Iqbal et al. [108]
and Rizzo et al. [133] proposed interesting approaches to classify fingerprinting scripts.
Both studies combined static and dynamic analysis to build a machine learning classifier.

• The static part is based on the similarities of Abstract Syntax Tree (AST) rep-
resentation of scripts. This solution is stronger than a textual comparison or
representation because it does not take into consideration the writing style of the
JavaScript file;

• The dynamic part relies on the collection of accessed properties and functions
that are used for fingerprinting, as well as the number of times these elements
were accessed, the parameters and return values in case of a function call. This
part helps bypassing obfuscated scripts that cannot be detected through a static
analysis.

Both studies use a machine learning model to classify scripts. Finally, they rely on a
manual labeling step to improve the model based on elements that can hardly be studied
by the classifier, such as the presence or absence of interactions between the fingerprinting
and non-fingerprinting parts of the scripts, or the likeness between the to-be-classified
script and wellknown fingerprinting library, like FingerprintJS2 [33].

Table 2.1 presents a summary of the classification techniques used by the studies in
the state of the art.

2.5 Browser fingerprinting countermeasures
In this section, we present the 3 major techniques used to defeat browser fingerprinting:

• blocking the loading or execution of fingerprinting scripts,
• unifying attributes value to break the uniqueness of a browser fingerprint,

2.5 Browser fingerprinting countermeasures 39

Study Analysis techniques Classification Evaluation

Ref. Year Static Dynamic Rule-based ML-based Validation/
Ground truth

dataset

Dataset Overall
presence on

websitesTextual AST (attributes
access)

[125] 2013 Fingerprinters set Alexa Top 10k 0.4%

[85] 2013 font detec
& enum ✓ N/A Alexa Top 1M 4%

[84] 2014 canvas ✓ N/A Alexa Top 100k 5%

[97] 2016
font detec
& enum
& canvas

✓ N/A Alexa Top 1M 0.07% to 1.43%

[106] 2018 ✓ ✓ ✓ Custom N/A N/A

[132] 2018 ✓ ✓ Custom + [97] [97] 0.3%
[89] 2020 ✓ ✓ [97] [62] N/A

[108] 2020 ✓ ✓ ✓ [97] Alexa Top 100k 10.2%

[133] 2021 ✓ ✓ ✓ [97] Custom -
236k scripts 1.1%

Table 2.1: Summary of the techniques used and results obtained by different detection
and classification studies.

• changing attributes value to break the stability of a browser fingerprint.

2.5.1 Blocking scripts

As fingerprinting is mostly based on the attributes collected via JavaScript, one
technique to protect against it relies on blocking the loading or execution of scripts.
Countermeasures designed to block scripts do not necessarily aim at specifically blocking
fingerprinting, but at blocking all malicious scripts, such as scripts used to track users
or collect all kinds of information about the users. These defenses are based on lists
of scripts that must be blocked. Two of the most popular lists are EasyList [30]
and EasyPrivacy [31]. These lists are included in many browser extensions, such as
AdblockPlus [1] and uBlock Origin [79]. This type of defense is very popular and
represents 6 of the Top 10 installed extensions on Firefox [37]. Several browsers also
integrated these defenses, such as Firefox [34] or Brave [14]. Because these defenses
often rely on static lists to block resources, these defenses are limited and cannot block
an unknown malicious script. Then, they failed at detecting all malicious scripts on the
Web [97] and required to be constantly updated.

The other approach to block malicious scripts is to block the execution of all
JavaScript code. This is a defense implemented by several browser extensions such as
NoScript [65] and by browsers, such as Tor [77]. While this defense is radical and
does not require lists to block resources compared to defenses presented previously, it
also prevents regular JavaScript code to run. Because of the overwhelming weight of

40 State of the Art

JavaScript in the Web ecosystem, it also prevents the user to have access to a large
part of the Web.

2.5.2 Unifying attributes value
This second strategy against fingerprinting is designed to counter one of the properties
that define fingerprinting: the uniqueness. As we explained in Section 2.3.2, uniqueness
is essential for fingerprinting to identify users. If several users share the same fingerprint,
it is impossible for a system to distinguish them and use it for identification. Thus, the
usage of fingerprinting is conditioned to an acceptable uniqueness rate.

Several browser vendors use this technique for their users. Firefox does not support
JavaScript APIs that are used for fingerprinting, such as the navigator.deviceMemory
and battery APIs. Additionally, browsers started to unify attribute values such as the
navigator.buildID and navigator.productSub. The buildID navigator property re-
turns 20181001000000 for all Firefox instances, while the productSub navigator prop-
erty returns 20100101 for all Firefox instances and 20030107 for all Chromium-based
instances. Firefox proposes another defense, called privacy.resistFingerprinting.
This configuration flag increases the number of APIs that are blocked or unified. Safari
was one of the first browsers to block Flash because of security concerns [74]. More
recently, Safari added a system called Intelligent Tracking Prevention (ITP) that aims
at protecting against tracking, including browser fingerprinting [8]. While the strategy
they use is not public, the idea behind it is to unify system attributes, such as fonts,
among all MacOS devices to decrease the uniqueness ratio of their users [9].

Saito et al. [135] studied the fingerprinting defenses of the Tor browser. The table
below presents the common fingerprint attributes and their status in Tor.

Status in Tor Fingerprint attribute
Available Local storage availability, Session storage availability

Constant value
User-Agent (JS and HTTP header), Accept, Accept-Language,
Accept-Encoding and Accept-Charset headers,
Date.getTimezoneOffset()

Modified Screen resolution
Unavailable Plugin list, Flash font list

Moreover, since version 5.5 (January 2016), the Tor browser makes JavaScript
fonts enumeration ineffective by building a unique list of basic fonts for all users [78].
This does affect a page’s rendering if the selected font is not be available. Additional fonts
can be allowed by modifying the font.system.whitelist attribute in the Fonts.conf

2.5 Browser fingerprinting countermeasures 41

configuration file for Tor, but this is not recommended since it would make users more
identifiable. Tor also asks for the user permission to use the canvas API [76]. In their
study, Saito et al. found that 14% of the Tor browsers running on version 5.5 or higher
can be fingerprinted, compared to 70% for versions before 5.5. The reason is, as explained
earlier, the list of fonts is highly discriminating.

While these defenses still provide information to distinguish between instances of
different browsers, it lowers the differences between users using the same browser. Because
all the users of a defense based on breaking the uniqueness share the same attribute
value, the defense is more likely to work if many users use this defense. Thus, browser
vendors are perfect candidates to implement this strategy as their browsers are used by
millions of users.

2.5.3 Changing attributes value over time
As explained in Section 2.3.2, a fingerprint evolves over time. Identification techniques
need to be able to link instances of the same fingerprint. Then, it is essential to rely on
stable attributes that rarely evolve. Based on this element, the last strategy to protect
against browser fingerprinting is based on the changes of a value of some attributes to
break the stability of a fingerprint. The frequency of the changes can vary from one
defense to another, but it should be high enough to quickly have an effect. Changes that
occur each day or during each browsing session start appear to be a relevant frequency.

This stability-breaking strategy is the one chosen by several browser extensions
such as Random Agent Spoofer [70]. It is an extension that protects against
browser fingerprinting using a system of profiles extracted from real devices. Profiles
are composed of some of the attributes that constitute a fingerprint, such as attributes
from the navigator object, the screen’s resolution, or the User-Agent. The browser
fingerprint is frequently updated by randomly selecting a profile among the set of available
profiles. As the selected profile will be different from the one previously used, that will
break the stability of the fingerprint.

Nikiforakis et al. [124] proposed a modified Chromium browser that focuses on two
browser fingerprinting attributes: i) The list of plugins, and ii) the list of fonts. Their
modified browser randomly adds plugins in the browser. Concerning the list of fonts, they
focused on the JavaScript font enumeration technique. The browser randomizes the
offsetHeight and offsetWidth properties of the HTML span element used to detect
fonts. Thus, contrary to other countermeasures that lie on the OS and browser’s nature,
their approach is less likely to be detected because the lies are minor and difficult to
identify. They tested their approach against four fingerprinting scripts:

• two commercial fingerprinting scripts: BlueCava [13] and Coinbase [27],
• one open source fingerprinting script: FingerprintJS [33],
• a research fingerprinting script: PetPortal [67].

42 State of the Art

For each script, they showed they could deceive all 4 fingerprinting scripts with their
technique.

Virtual machines Laperdrix et al. [115] proposed an approach that leverages virtual
machines to generate consistent and unique fingerprints. Their solution aims at breaking
the stability of a browser fingerprint by changing the user’s OS, browser, font list, and
plugin list. The table below presents the different values they use to randomize the
fingerprints.

Element Possible values
OS Fedora 20 (32 & 64 bits), Ubuntu 14.04 (32 & 64 bits)
Browser Firefox 28.0, Firefox 29.0, Firefox 30.0, Chrome 34, Chrome 35, Chrome 36
Fonts 2, 762 different fonts
Plugins 39 different plugins

Their approach, Blink, runs inside a Virtual Machine (VM). Each time it is launched,
it generates an environment that exhibits a new fingerprint by randomly selecting the
OS of the VM image, and then randomly selecting one of the browsers, and finally,
installing a random selection of fonts and a random list of plugins. Thus, by frequently
generating new fingerprints, the technique breaks the stability required for identification.
Moreover, contrary to countermeasures that generate inconsistent fingerprints, Blink
does not lie since it uses a real OS, real browser, real fonts, and real plugins. This
proof-of-concept approach could be extended to randomizing more attributes, like drivers,
or also randomizing the browsers’ configurations, the OS configurations, or even the
configuration of the virtual machine itself (e.g., hardware acceleration, number of CPUs).
Laperdrix et al. also proposed a version of Blink that uses Docker containers instead of
VMs [12].

2.5.4 Induced information leaks
While defenses help to protect against browser fingerprinting, they can introduce privacy
leaks. Mowery et al. [121] showed filterlist-based extensions have side-effects that can be
exploited to track users. In particular, they proposed an approach to infer the domains
whitelisted by the user in the NoScript extension [65]. Thus, this set of domains is
itself an information that can be added in the list of attributes of a fingerprint. Even
though they evaluated their approach only against the NoScript browser extension,
they explained that similar approaches could be applied to other ad and tracker blocker
extensions.

2.6 Browser fingerprinting usages 43

Nikiforakis et al. [125] raised a more specific problem: fingerprinting countermeasures
tend to generate inconsistent fingerprints, i.e. combinations of attributes that cannot
be found in the wild. For example, the JavaScript navigator object exposes the
platform property that returns the OS of the device. If a countermeasure lies on the
User-Agent and changes its OS, it also has to change the OS given by the platform
property. If it does not, the 2 attributes will give 2 different OS, which is something that
cannot be observed in the wild, hence something more unique. Thus, they argue that
these inconsistencies make the users more identifiable and that fingerprinters can use
them for tracking.

Vastel et al. [149] studied several countermeasures that could generate inconsistencies.
They showed that even though Random Agent Spoofer [70] uses real device profiles to
generate consistent fingerprints, it is still possible to detect its presence and recover the real
OS and browser. They also studied a particular kind of countermeasure: canvas poisoner
extensions, such as Canvas Defender, Canvas FP Block and FP Random. These
extensions operate by adding noise to the canvas to hide its real value. Vastel et al. showed
they could easily detect the noise added by these extensions, which can lead to more
unique fingerprints since knowing the user has installed one of these extensions increases
uniqueness. They showed that, in some cases, it was possible to extract the noise and
recover the canvases original value, making the extension counterproductive. Finally,
they analyzed Firefox defenses and showed they introduced inconsistencies that can
be used to detect users with fingerprinting protection activated. For example, when
fingerprinting protection is active, the WebGL vendor and WebGL renderer might not
be consistent with what the OS claimed. They also detected inconsistencies about the
media query -moz-os-version and the installed fonts list when the browser was running
on Windows. However, since the Firefox fingerprinting protection might be used by a
significant number of users, the privacy gain it provides to its users probably compensates
for the information leak it engenders.

These results highlight the challenge of designing efficient and reliable defenses against
browser fingerprinting.

2.6 Browser fingerprinting usages

2.6.1 User Tracking

Many studies rely on client-side signals and information to guess the intend of a script.
While some signals are insufficient, others express the real goal of the script. Niki-
forakis et al. [125] analyzed 3 popular browser fingerprinting scripts. As they are
provided by tracking companies, the researchers present them as trackers. Acar presented
in his 2 studies [85, 84] several results about the presence of browser fingerprinting.

44 State of the Art

While he does not explicitly conclude about the usages made by these scripts of the
browser fingerprinting technique, several results, such as the Flash and HTTP cookies
respawning performed by third-parties, showed these scripts are performing tracking.
Englehardt et al. [97] used the EasyList and EasyPrivacy filter-lists to classify third-
party scripts. The lists themselves have the main purpose to block tracking and are
implemented in consequence. Fouad et al. [101] used OpenWPM to crawl the Alexa
Top 30k to measure cookies respawning thanks to browser fingerprinting. While they
measured the IP address is the most used feature to respawn cookies, many fingerprinting
attributes such as the User-Agent, Language and Do Not Track headers, or the time-
zone JavaScript property, are also used. They also showed 37 of the respawned cookies
are third-party, many of them being generated by tracking and advertising companies.

2.6.2 Bot Detection

Bursztein et al. [92] proposed an approach that leverages the unpredictable but stable
nature of canvas to detect crawlers and emulated devices. Their approach aims at
generating canvas whose values are the same among devices that belong to the same
class, i.e. same browser and OS, but different among different classes. They deployed
their fingerprinting script on real traffic and observed their website suffered two attacks
on the authentication page of the website. Their post-analysis of the IP addresses and
fingerprint data revealed that the two attacks shared a device signature belonging to the
PhantomJS automated browser. However, it is unclear how their detection solution would
perform against more advanced and realistic headless browsers, such as Chrome and
Firefox headless. Furthermore, it requires a significant amount of devices, in the order
of millions of devices, to bootstrap and maintain the detection system by calculating
each device ground truth, a quantity of data that only large companies like Google
can obtain and use to brute-force their approach. Moreover, they only address a single
attribute, canvas rendering.

Jonker et al. [111] studied the techniques to detect bots. They analyzed a client-
side web bot detection commercial script, and found it tests the presence of several
JavaScript properties. They measured the presence or absence of new JavaScript
properties in 14 automated browsers. These new properties consist in the list of keys of
the document and window objects, and the list of couples key/value of the navigator
JavaScript objects. The automated browsers were tested in both regular and headless
mode if available, which does not provide a graphic interface. They found all the
automated browsers they tested had differences compared to the original browser on
which they are based. Their result illustrates the possibility to rely on these attributes to
detect more easily bots. Finally, they browsed the Alexa Top 1M and found out 12, 8%
of the websites were collecting fingerprint-based bot detection information.

2.6 Browser fingerprinting usages 45

Vastel et al. [151] studied the usage of browser fingerprinting for bot detection. They
crawled the Alexa Top 10k and measured 291 websites were blocking their crawler. They
measured 93 of these websites were collecting fingerprinting attributes. They designed 6
different crawlers to study more in-depth these websites. Each of these crawlers has a
specific set of attributes modified to detect the attributes used by the websites to detect
the crawler. By running these crawlers against the websites that blocked the original
crawler, they were able to measure which attribute was causing the blockage and how to
bypass the defense. Finally, they explained many automated browsers were now really
close to vanilla ones. This leads to more difficulties for scripts to distinguish between
vanilla and automated browsers, as well as more facilities for automated browsers to hide
themselves by changing the attributes responsible for the detection.

2.6.3 User Authentication
As explained in Section 2.2, the authentication process on a website aims to verify a
user’s identity. The verification happens when the user enters her credentials or along
the user session lifespan. In this context, several studies analyzed and evaluated the
security gain provided by the usage of browser fingerprinting in an authentication context.
Unger et al. [145] proposed an approach to enhance session security with fingerprinting.
Their approach works in five steps:

• the server verifies if the session cookie sent by the browser is associated with an
existing session,

• the server performs basic checks for static fingerprinting attributes, such as the
HTTP headers, their order and the IP address range,

• the server asks the client browser to test the presence of features in the browser,
such as CSS and WebGL,

• the browser sends the list of tested features to the server, and
• the server verifies the values sent by the browser.

Their approach protects users against session hijacking, but is vulnerable to man-in-the-
middle or Cross-Site Request Forgery (CSRF) attacks. Furthermore, they implemented
the proposed solution but did not evaluate it.

Spooren et al. [141] evaluated the usage of browser fingerprinting to enhance web
authentication for mobiles. They integrated a fingerprinting solution in a module of the
OpenAM authentication system [66]. It consists in a fingerprinting script that collects the
fingerprint of the user that tries to authenticate, and a rule-based algorithm to compare
fingerprints. They evaluated their solution by collecting 59 mobile fingerprints. First,
they explained a static fingerprint cannot be considered as a robust identity proof in a
defense mechanism because many attributes can be easily spoofed. They also explained
their dataset has too little entropy, which leads to fingerprints being too similar and not
distinguishable enough. While this makes the defense weak because an attacker would

46 State of the Art

have little effort to mimic any of the fingerprint of the dataset, this statement requires
to be confirmed on a larger dataset.

Preuveneers et al. [130] were the first to talk about adaptive authentication with
browser fingerprinting by using a risk model based on the situation on which the user
tries to authenticate. An authentication attempt with the usual device of the user on a
usual network can be easily considered as safe while an authentication attempt on an
unusual device or an unexpected network can be considered as risky. They discussed 4
security requirements a risk-based system with browser authentication should validate:

• SR1: Ensure fingerprints cannot be compromised,
• SR2: Prevent fingerprints replay-attacks,
• SR3: Support fingerprints revocability,
• SR4: Ensure fingerprints can be strongly linked.

They developed SmartAuth, an authentication framework that leverages dynamic
fingerprinting. Rather that relying only on static fingerprints that have a deterministic
value, they also collect dynamic information such as the geolocation, the time of access
and the IP address. They implemented their solution as a new authentication plugin.
They evaluated their solution against a controlled environment of 2, 000 fingerprints and
showed they were in a large majority able to successfully link their dynamic fingerprints.

Alaca et al. [87] proposed the usage of browser fingerprinting to enhance user security,
both during the initial authentication attempt and during the session. Their idea is
to add the user’s fingerprint to the request so that the server can perform additional
verifications, both during the authentication attempt and during the session duration.
During the authentication attempt, the server compares the received fingerprint to the
ones already trusted for this account, and allows or denies the attempt accordingly. As
explained by Unger et al. [145], the browser fingerprinting technique can be used to
enhance security during the session duration by checking fingerprinting attributes for
every HTTP request sent. Additionally to the properties of browser fingerprinting we
defined in Section 2.3.2, they defined additional properties for browser fingerprints to
be used in an authentication system: Low Resource Use and Spoofing Resistance.
For each attribute in the state of the art, they describe its level of used resource during
the collection and the resistance to spoofing. As browser fingerprinting attributes are
the result of a collection of JavaScript properties and functions return values, the
attributes are in a large majority using few resource, which male them good candidates to
enhance web security. However, they are very vulnerable to spoofing and can be collected
by malicious scripts to be reused by attackers. To this end, Alaca et al. also defined 5
threat models against such a system, and discuss their impact on a web authentication
system with browser fingerprints.

Goethem et al. [148] studied the usage of accelerometer for web authentication. They
queried the vibration motor of a mobile via the navigator.vibrate() JavaScript API

2.7 Conclusion 47

for different duration periods, and join them to form a trace. They made the assumption
that by varying the length of the vibration, they will generate different vibration periods
that will be robust and distinguishable enough. During the account registration, they
register a set of traces. When a user tries to login, the system collects a trace of a defined
length and compare it to the already registered trace of the same length. They evaluated
their techniques against a set of 15 mobiles devices. They explained their defense has
low risks of being spoofed compared to static fingerprinting because an attacker using
the accelerometer by making vibrate the device would alert the user. Moreover, the
device needs to be placed on a hard surface. While this is feasible for authentication,
an attacker would have difficulties to confirm this information, or would have to rely on
data collected on a non-hard surface, which provides less robust data.

Laperdrix et al. [114] explored the use of dynamic challenges to enhance authentication.
They proposed to generate two canvas images when the user authenticates: the first canvas
is verified for the current authentication, while the second is stored on the server and is
used for the device next authentication. This allows the server to use dynamic canvas
tests, avoiding replay attacks, while side-stepping the issue of canvas unpredictability
(the server doesn’t need to know in advance the value of a dynamic canvas, it can collect
it directly from the device, one step at a time). Laperdrix’s approach is similar to the
approach proposed by Bursztein et al. [92], where they ask the browser to generate
random challenges based on canvas rendering. Given a seed, the challenge consists in
drawing randomly selected canvas primitives, such as Bezier curves or polynomial curves,
as well as applying random colors and shadow. They evaluated their approach on real
traffic and showed that given a random seed, they were able to generate unique and
stable canvas fingerprints. Thus, it makes it difficult for an attacker to replay a canvas,
or to forge a canvas by predicting its value.

Andriamilanto et al. [88] evaluated the properties of browser fingerprinting for web
authentication. They list the properties required for using browser fingerprinting for
web authentication: distinctiveness, stability, and performance. They evaluated these
properties on a dataset of 4M fingerprints collected over 6 months. They measured a global
uniqueness percentage of 81%–43% for the mobile dataset. They showed fingerprints were
quite stable, but explained stability could still be improved by removing some attributes.
Finally, they measured a median time of 2.92 seconds (2.64 for desktop devices and 4.44
for mobiles) taken by their script to collect the fingerprint. Their results illustrate the
trade-off to reach between uniqueness, stability, and collection speed.

2.7 Conclusion
Limitations. In this section, we presented the current state of the art of web authenti-
cation. We showed a system that only relies on a password to authenticate its users is

48 State of the Art

vulnerable to many attacks. On one hand, we measured the adoption and acceptance
of several multi-factor authentication mechanisms, showing that no particular solution
stands out to improve security while having a limited impact on the user experience and
being accepted by the users. However, risk-based authentication seems to be promising
at it combines security improvements with limited degradation of the user experience.
On the other hand, we presented browser fingerprinting, a stateless and permission-less
identification technique on the Web. Thanks to its identification power, we believe
browser fingerprinting can be a reliable technique for risk-based authentication. Based
on this belief, we identify 3 limitations of the state of the art:

• Several works analyzed and measured the uses of browser fingerprinting for tracking
and bot detection on the Web, but no study in the state of the art measured the
use of this technique to enhance web authentication.

• Current techniques to link fingerprints scale badly when used on a large dataset
of fingerprints. Additionally, their design and goals make them inadequate for
authentication.

• Several studies covered browser fingerprinting for web authentication from a the-
oretical point of view, but they lack a complete evaluation of the authentication
scheme, from both the security and user experience point of view.

Contributions. In this manuscript, we study browser fingerprinting to enhance web
authentication, and tackle the research questions defined in Section 1.2.

In Chapter 3, we address RQ1 by measuring the collection of browser fingerprints by
scripts when visiting sensitive pages—sign-up, sign-in, basket and payments pages. We
analyze the providers of fingerprinting scripts and uncover 12 security-centered organiation.
We also observe additional authentication factors and bot detection techniques being
required during authentication attempts. Finally, we answer RQ2 concerning the current
use of fingerprinting to enhance web authentication by designing and evaluating 2 attack
models against authentication schemes intended to measure the security gains provided
by browser fingerprinting.

In Chapter 4, we design a controlled environment to collect browser fingerprints while
knowing the ground truth of the browser and device of our dataset. We analyze these
fingerprints and identify the unique and stable attributes, hence answering RQ3 and
RQ4. We use this knowledge to design a browser fingerprint linking algorithm for web
authentication. We answer RQ5 by evaluating our algorithm on a dataset of browser
fingerprints collected in the wild to demonstrate its ability to reliably and efficiently link
browser fingerprints evolution.

In Chapter 5, we study RQ6 by proposing concerns concerning the user experience
of authentication schemes leveraging browser fingerprinting. We design a risk-based
authentication scheme with browser fingerprints and implement it on an existing Single

2.7 Conclusion 49

Sign-On (SSO) authentication system. We answer RQ7 by evaluating the security
improvements provided by our authentication scheme. While we identify situations that
lead to a degradation of the user experience, these situations happen on a much lower
frequency that comparable situations on MFA systems. We discuss the potential attacks
and threats against our system, and improvements to be incorporated into our scheme.

Chapter 3

FP-Redemption: Studying Browser
Fingerprinting Adoption for the
Sake of Web Security

Over the years, studies have focused on studying browser fingerprinting on the Web.
Many studies measured the presence of browser fingerprinting on the Web by using
automated tools to crawl the Top Alexa [85, 84, 97]. Some contributions proposed
using browser fingerprinting to improve web authentication [145, 87, 114], but have not
evaluated the benefits to secure online websites. In this chapter, we investigate the
adoption of browser fingerprinting to reinforce authentication and security on the Web.
Through our experiments, we intend to detect if fingerprinting is used to strengthen web
security, and in which specific contexts this occurs.

In Section 3.1, we define 4 types of web pages that store and process sensitive user
information, namely sign-up, sign-in, basket and payment pages. We manually visit 1, 485
pages from 446 websites belonging to 14 different categories with the aim of detecting
fingerprinting scripts. In Section 3.2, we design and implement a browser fingerprinting
classification technique based on both automated and manual heuristics. When ran on our
dataset, we detected that 169 scripts are collecting browser fingerprints. In Section 3.3,
we evaluate the presence of these fingerprinting scripts on the pages of our dataset.
We show they are present in all type of pages and website categories, and observe 14
fingerprinting scripts being served by security-focused organizations. In Section 3.4, we
study the resilience of websites adopting browser fingerprinting for security purposes by
simulating two classes of attacks: stolen credentials and cookie hijacking. We show a
single website uses fingerprinting to protect against stolen credentials, and no website
are protected against cookie hijacking. We discuss our results and the limitations of our
work in Section 3.5 and conclude in Section 3.6.

52
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

3.1 A Dataset of Secure Web Pages
This section reports on our methodology to build a dataset of secured web pages to study
the use of browser fingerprinting for security purposes.

3.1.1 Websites Under Study

Secured pages. All pages of a website are not equal when it comes to user security.
While most web pages do not process sensitive data, some require careful design to deal
with user personal information (e.g., emails, credentials, personal details, payment card
numbers). On sensitive web pages, any security breach can quickly lead to privacy leaks
for the end-users and seriously affect the reputation of the website. We decided to focus
on 4 types of web page requesting personal data:

1. Sign-up, which may require email, name, password, and additional personal infor-
mation depending on the website.

2. Sign-in usually requests user credentials: email/pseudonym and authentication
factor(s).

3. Payment is a page containing a specific form requesting the user to input their
payment information (e.g., credit card, wallet, banking information).

4. Basket refers to any page related to a shopping basket or shopping cart process,
starting from adding an item up to, but not including, payment. Such pages may
also request additional information, such as billing/delivery addresses.

We call these 4 types of web page secured web pages. To assess our results, we also
aim at collecting data from other types of pages. From these, we isolated home pages as
it has been reported they might fingerprint 25% less [147]. We consider pages that are
neither secured nor home pages to be content pages.

Website categories. Previous studies crawled the Top Alexa with automated tools,
thus studying a large set of home pages and resources reachable by bots. We decided to
avoid the bias introduced by bots, preferring to manually browse the websites and reach
deeper pages that require user interactions. Moreover, we are interested in studying
the adoption of browser fingerprinting on secured pages. In this context, the diversity
of websites indexed by the Top Alexa—or other rankings—proved to be unsatisfactory.
Thus, we decided to consider a list of website categories that we estimate to be more
relevant for the purpose of our study. To build this list of relevant categories, we adopted
the following methodology:

• we targeted websites focused on gambling, credit card, financial, and money services;
• we focused on different retail websites, such as event tickets, games, flights and

transports, and accommodation booking websites;

3.1 A Dataset of Secure Web Pages 53

• finally, we added to our list job search, social network, adult, dating, institutional
and governmental websites as they often request detailed personal information
when creating an account.

We used the following list of keywords to get specific website categories: Adult,
Airlines, Bank, Bet games, Cryptocurrency, Dating, Ecommerce, Email, Event ticket,
Financial, Flight companies, Healthcare, Job search, Metro/train/flight tickets, Money
transfer service, News, Online game, Poker, Shopping, Social insurance, Social network,
Sport ticket, Stock trading, Streaming, Taxes, Travel agencies, TV channel.

We used the following list of countries for our experiments: China, France, Germany,
India, Japan, Russia, Spain, United Kingdom, United States.

We mainly entered a combination of the country name, category, and the word
‘website’ into the Google search engine, and we visited the websites given on the first
page of the results. We also translated the search terms into the main language of the
country when the results given in English were not suitable according to the country and
the category. This was the case for several searches for Russian websites.

3.1.2 Web Page Acquisition
Past studies used automated crawls to observe browser fingerprinting at scale [125, 84, 97].
However, relying on bot crawls introduces bias in the collected data [111, 107, 156] as more
and more websites use defenses to block bot access [151]. Automating the registration
and payment processes is also a challenge due to the high variability that can be found in
related forms [110]. No unique or universal standard exists, and the number of required
fields can strongly differ depending on page types and website categories. The coding
practices may be different with obfuscated code and custom attributes, making it hard
for a bot to automatically fill a field with the right information. Security requirements
are also different, including diverse password constraints and security questions. As
the scope of our study is not to develop a bot to automatically test these websites, we
manually visited them and collected the required data via a custom web extension we
developed. This strategy allows us to appropriately locate interesting secured pages and
reduce the bias of being blocked by the bot security mechanisms in place.

3.1.3 Monitored Fingerprinting Attributes
This work does not intend to discover new browser fingerprinting techniques, but rather
to investigate the adoption of existing ones in the context of web security. As part
of our data acquisition campaign, we thus focused on collecting the values of existing
attributes reported in the literature. Thus, we consider navigator & screen properties [96,
117, 125, 123, 127], fonts detection via span’s width and height measurement [125],
canvas [122], audio [97], and WebGL rendering [93] and parameters [117], WebRTC [97]

54
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

and bots detection attributes, including window properties that were considered by
Jonker et al. [111]. Our web extension monitors the accesses triggered by scripts to these
attributes by overriding getters of selected properties and functions. Whenever one of
these attributes is accessed, the web extension collects the function or property name, the
list of arguments passed in the case of a function, the property’s value or the function’s
return value, the script accessing the property or function, and the page’s URL.

We manually visited the selected websites and we used a single identity we created
on a popular email provider. For each visited page, we stayed at least 10 seconds, and
manually filled each form. When asked for proof of identity, such as a valid phone
number, an ID or a credit card, we provided one of the phone numbers used to create
the email account. As our identity was fake, we were not able to provide a real ID (e.g.,
a passport) when required by some websites. Given that payment pages require filling
out credit card information, we used a fake credit card generator1 to be able to validate
online payment forms and make sure that we trigger most of the scripts embedded in
the page. Even though the generated cards were fake and the payment processes were
not completed, we bypassed many client-side verifications thanks to this technique. Yet,
using fake payment data raises several issues, such as, our account could be considered
suspicious and prevented from performing additional actions, and our IP address could
be blacklisted and blocked for the rest of our experiment. To reduce suspicion, we
used several residential IP addresses during our data collection. Although we provided
websites with fake payment data, we believe the low number of payment attempts we
performed on each website has had minimal impact on their operations. We did not try
to harm them in any way and we canceled our baskets if any information received after
the payment attempt indicated the website could validate the basket and ask for a future
payment.

3.1.4 Resulting Dataset Description
We performed our data collection campaign from December 2019 to January 2020.
We used a fresh install of Chrome 79 on Ubuntu 19.04. We always accepted the
default cookie settings from pop-ups, but refused all other types of solicitations, such
as geolocation, notifications, or newsletters. In total, we visited 1, 485 pages across 446
websites.

Website category and ranking. We used the category keyword put into the search
engine to categorize the website. We specifically targeted bank and money-related services
because of the sensitivity of the data they manipulate, visiting 85 of these websites (see
Figure 3.1). The country tag represents the main country the website operates in. We
assign the country tag by following the result of two observations: i) Is the website

1https://www.creditcardvalidator.org/

https://www.creditcardvalidator.org/

3.1 A Dataset of Secure Web Pages 55

Figure 3.1: Distribution of the 446 visited websites per country & category.

11 10 6 5 10 14 4 7 12 5 1
11 0 6 2 0 1 5 6 4 0 3
11 5 2 2 3 4 4 4 1 1 0
22 0 4 1 2 0 1 0 0 3 0
4 4 0 5 1 1 1 4 1 3 8

16 8 1 0 0 3 1 0 0 0 0
2 3 4 5 0 3 1 2 0 4 3

11 0 5 4 1 2 0 1 1 1 0
11 4 0 3 0 0 0 3 0 1 1
11 1 2 1 1 1 3 1 0 1 0
1 2 1 2 4 0 2 0 4 1 5

12 0 0 2 4 0 0 0 0 2 0
3 0 4 0 4 0 6 0 2 0 0
3 3 4 2 3 0 0 0 0 3 0

13 0 0 0 0 0 0 0 1 0 1

Int
ern

ati
on

al UK
Russ

ia
Fra

nce

Germ
an

y
Othe

r
Chin

a
Jap

an
Ind

ia
Sp

ain US

Country

142 40 39 34 33 29 28 28 26 25 22

Bank & related
Ecommerce

Flights & related
Adult

Event ticket
Technology

Institutional
Dating
Media

Accomodation
News

Financ. & crypto.
Social network

Job search
Games

Ca
te

go
ry

85
38
37
33
32
29
27
26
23
22
22
20
19
18
15

To
tal

Total 446

available in English or in multiple languages and translated into the user’s preferred
language? ii) Are the services proposed by the website available in a single country or
geographic zone? If the website is available in multiple languages or served in English,
and if the website provides services to multiple countries, we use the International tag.
Otherwise, we specify the country. If the website does not operate in a listed country, we
use the Other tag. With these rules, we tagged 142 International websites. The resulting
distribution of visited websites per country and category is depicted in Figure 3.1. We
did not aim to build an exhaustive manual dataset. However, we checked the Top Alexa
rankings of the websites in our dataset. We find that our dataset is relatively well balanced
across the less-than-1k (18%), 1k-10k (29%), 10k-100k (27%) and higher-than-100k (26%)
Top Alexa rankings.

Page type. We also tagged each page according to its type. By default, a page
is associated to a single tag, with the exception of home or content pages that have
a sign-up or sign-in embedded form that allows the account creation or authentication
without going to a specific page (44 occurrences in our dataset), and single pages that
handle both account creation and authentication processes (3 occurrences in our dataset).
In the case of pages containing both basket-like content and a payment form, we tagged
the page as payment. If no tag matched, we used the content tag. Figure 3.2 presents
the distribution of the page types among our dataset.

56
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

Payment Basket Sign-up Sign-in Home Content
Page type

0

100

200

300

400

500

600

Nu
m

be
r o

f p
ag

es

5.9%

13.1% 12.9% 12.3%

19.0%

36.7%Secure (708 - 44.3%)
Not secure (890 - 55.7%)

Figure 3.2: Distribution of visited pages per type (the sum exceeds 1,485 pages as some
pages match several types).

3.2 Classification of Fingerprinters

The efficiency of browser fingerprinting relies on the design and implementation of a
wide combination of stateless attributes, which can uniquely identify a user who visits a
web page. However, this combination of fingerprinting attributes is not formally defined
and constantly changes due to the evolution of JavaScript APIs. In Section 2.3.3,
we presented the current state of the art concerning browser fingerprinting attributes.
The list of attributes we collected covers all the major attributes currently reported,
but this list might evolve as some API might become deprecated or being removed by
browsers vendors. Oppositely, new APIs introduced in browsers might be reported by the
community as being usable in a fingerprinting context. This makes browser fingerprinting
challenging to detect at large. As we mentioned in Section 2.4.2, some techniques
exist [108, 133, 89] to classify fingerprinting scripts, but their implementation is not
publicly available, leading to a technique hardly reusable to label a real-world dataset
using all the attributes a browser fingerprint contains. This section, therefore, proposes
to apply a supervised classification technique that leverages a ground truth of known
browser fingerprinting scripts to label a list of scripts collected in the wild as fingerprinter
or non-fingerprinter, based on the combination of APIs and parameters they access. We
use similar heuristics and methodology reported in the literature [108, 133, 89].

3.2 Classification of Fingerprinters 57

secure
pages

dataset
(D)

Disconnect

select all
fingerprinters

extract
APIs

Matrix
MF

compute
max(Jaccard)

jaccard(attr(si),attr(fj))
+ attr(si) ∩ attr(fj)

script
(si)

for each
script si

extract
APIs

Script APIs
attr(si)

manually
label

script si

score=1

fingerprinters
(F)

score<1

non-
fingerprinters

(C)

extract
APIs

Script APIs
attr(ck)

compute
max((attr(si) ∩

attr(fj))∩attr(ck))

add
script si

|max| = |attr(si)
∩attr(fj)|

|max| < |attr(si)
∩attr(fj)|

recognized as fingerprinter

add
script si

extract
APIs

attr(si) ∩ attr(fj)

b) Script APIs extraction and similarity computing

c) Auto-labelling

a) Disconnect d) Manual labelling

Script APIs
attr(si)

add script
APIs

Figure 3.3: Flow chart representing our incremental script classification algorithm.

3.2.1 Incremental Script Classification
Given the lack of a formal model to identify browser fingerprinting scripts, we propose to
adopt an incremental classification process. In particular, we leverage a list of scripts
classified as fingerprinter by Disconnect to explore similarities in the accessed APIs.
Therefore, we compute the similarity score (Jaccard index) to automatically classify our
scripts. If a script cannot be labeled automatically, we go through a manual analysis to
classify it. We continuously update the similarity scores whenever a script is classified as
fingerprinter or non-fingerprinter. This way, we reduce the number of iterations required
to label all the scripts included in our dataset by exploiting scripts similarities. Figure 3.3
provides an overview of our incremental script classification approach.

3.2.1.1 Learning fingerprinting attributes from Disconnect

We bootstrap our approach with the Disconnect project that provides a list of fin-
gerprinters whose behaviors have been analyzed by experts [28]. Disconnect has the
advantages of being public, constantly updated, and recognized by the community to be
reliable [89, 108, 133].

Our first step consists in extracting all the JavaScript attributes attr(fi) accessed by
each of the fingerprinters fi ∈ F reported by Disconnect to identify the discriminating
features of known fingerprinters. We bypass minification and obfuscation techniques
by instrumenting and monitoring the runtime behavior of each script loaded in an
empty web page. Each signature of a fingerprinting attribute is structured as a 3-
tuple ⟨name, args, N⟩, where name is the name of the accessed API, args is the list
of parameters used to retrieve this attribute (empty if none) and N is the number of

58
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

times that the pair ⟨name, args⟩ has been observed along with the execution of script fi.
This results in a matrix of attributes MF that characterize the fingerprinters listed by
Disconnect.

3.2.1.2 Computing the fingerprinter similarity for unknown scripts

We start an incremental classification process that takes in input the classification matrix
of known fingerprinters attributes MF and the list of scripts S from our dataset of secure
web pages. For each script si ∈ S:

1. we extract the set of attributes for each script (attr(si)),
2. we compute the similarity score (Jaccard index) between attr(si) and the attributes

attr(fj) of each known fingerprinter fj ∈ F , and
3. we keep the tuple with the maximum similarity score and its corresponding inter-

section ⟨ si , jaccard(attr(si), attr(fj)) , attr(si) ∩ attr(fj)) ⟩.
We order the scripts from S by decreasing similarity score to iteratively find the closest
script to a known fingerprinter.

3.2.1.3 Auto-labelling

If the maximum similarity score of si equals 1, si implements a browser fingerprinting
feature and we automatically label it as a fingerprinter. However, if the score is less than
1, we need to compare the script si to all of the non-fingerprinting scripts already labeled
to take a decision. For each non-fingerprinter ck ∈ C, we calculate a new intersection
(that reuses the previous one we saved), specifically attr(ck) ∩ (attr(si) ∩ attr(fj)), and
we keep the result that maximizes the size of the new intersection. If the attributes we
obtain from our intersection with fingerprinters are the same attributes we obtain from
our intersection with non-fingerprinters—i.e., the intersections are equal—the script’s
fingerprinting attributes are not discriminating enough to be considered a fingerprinter,
so we label the script si as non-fingerprinter. However, if the intersections differ, the
fingerprinting attributes attr(si) are new in the classification, and our algorithm cannot
automatically label the script si.

3.2.1.4 Manual labeling

As pointed out by previous studies [89, 108, 133], manual labeling is necessary when
the automatic tools used to classify are unable to decide the label of a script. If our
algorithm cannot automatically label the script, we manually analyze the code and label
it as either fingerprinter, non-fingerprinter, or unknown. To do so, we use the following
criteria:

• the script is blocked by EasyList [30] or EasyPrivacy [31],

3.2 Classification of Fingerprinters 59

• the script contains obvious keywords that reveal its goal, such as fingerprinting or
deviceFingerprint,

• the attribute values are forwarded to a remote server, which can reveal the need
for the server to compute similarities with previously saved fingerprints, or

• the privacy policy, when available, of the company owning the script mentions
fingerprinting, stateless identification technique, device or browser identification.

As soon as the manual evaluation matches 2 of the above criteria, we label the script as
fingerprinter. If at most 1 criteria is matched, we label the script as non-fingerprinter. If
we cannot perform a manual analysis, for example due to the script being too obfuscated,
we label the script as unknown. Whenever we label a fingerprinter : i) the fingerprinting
attributes of si are added to the detection matrix MF ; ii) we rerun the classification
process in a new iteration and only stop when all the scripts of our dataset have been
labeled.

3.2.2 Script Classification Results
We ran the algorithm on the 4, 665 scripts embedded in the 1, 485 web pages of our dataset.
At the time we collected the data, Disconnect labeled 82 scripts as implementing
browser fingerprinting. We cleaned the list provided by Disconnect by removing the
scripts matching one of the following rules:

• browser fingerprinting scripts without a URL (12 scripts) or with a URL that does
not point to a JavaScript file (15 scripts),

• scripts that changed and do not include the fingerprinting attributes they were
initially labeled for (7 scripts),

• scripts we could not run, either because they were too obfuscated and we could
not find the triggering events, or because we were lacking additional resources
(13 scripts).

After these steps, we kept a list of 35 fingerprinters and integrated each fingerprinter in
a blank page to collect the fingerprinting attributes as described in Section 3.1. We filtered
duplicate scripts that collect the same attributes, and bootstrapped our classification
algorithm with a classification matrix MF composed of 19 distinct sets of fingerprinting
attributes. Finally, we ran our algorithm to label our dataset. The distribution of the
accumulated number of scripts labelled as fingerprinter, non-fingerprinter, unknown, as
well as not-yet labeled scripts is reported in Figure 3.4. Fingerprinting scripts were mainly
labeled in the first iterations, non-fingerprinting scripts until the 35th. The manual effort
only represented 7.7% of the total number of scripts in our dataset, showing the benefits
of our approach. Overall, out of 4, 665 scripts, we identified 199 browser fingerprinting
scripts.

Finally, we removed duplicate fingerprinting scripts. We removed the URL parameters
of the scripts when they did not change the attributes collected, and removed the resulting

60
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

0 50 100 150 200 250
Iteration

1

2
3

6
10

20
30

60
100

200
300

600
1000

2000
3000
5000

Nu
m

be
r o

f s
cr

ip
ts

Fingerprinters
Non-fingerprinters
Unknown
Remaining

Figure 3.4: Iteration distribution of the label put on the scripts of our dataset.

duplicates. We also removed duplicate scripts when they had a similarity score of 1 with
only small differences in their names, URLs, or domains. We believe these changes are
due to domain or URL updates, but the scripts are essentially the same. After removing
the duplicates, we obtain a final dataset of 169 browser fingerprinting scripts.

3.2.3 Algorithm results validation
We computed a sample size to validate our algorithm. Choosing a confidence level of
95% with a margin error of 5%, our sample contains 355 elements.2 We randomly chose
355 scripts from our dataset that were automatically labeled. We labeled these scripts
manually, leading to 349 correct and only 6 incorrect labels compared to the results of
our algorithm. Given the low proportion of differences between the label given by our
automatic method and the results of our manual validation, we believe our classification
method is efficient to detect browser fingerprinting scripts.

In this section, we propose a new scripts classification algorithm. Applied on our
dataset, we detected 169 browser fingerprinting scripts. The following section will study
these browser fingerprinting scripts, as well as their inclusion the pages and websites of
our dataset.

2https://www.checkmarket.com/sample-size-calculator/

https://www.checkmarket.com/sample-size-calculator/

3.3 Analysis of Secure Web Pages 61

0 10 20 30 40 50 60 70
Nb of attributes

0.0

0.2

0.4

0.6

0.8

1.0

Fingerprinters
Non-fingerprinters

Figure 3.5: CDF of number of attributes used by scripts.

3.3 Analysis of Secure Web Pages

3.3.1 Browser Fingerprinting Attributes
We first observed the collected attributes. Figure 3.5 reports on the Cumulative Distribu-
tion Function (CDF) of attributes collected by the scripts of our dataset. The lowest
number of attributes collected by a fingerprinter is 5, showing fingerprinting attributes can
be used selectively. For example, we detected a script that clearly indicated their intention
to identify the user thanks to specific function names, such as deviceFingerPrinting
or getFingerprint,3 yet only accessed 8 attributes.

Of the 169 browser fingerprinting scripts we classified, we observed 132 distinct
fingerprinting attributes that we organized into 8 families. The family of an attribute is
the parent JavaScript object calling the attribute; except for the bot attributes where
we used Jonker et al. list [111]. Figure 3.6 presents the distribution of the attributes
per fingerprinter grouped by family, showing that all attribute families are exploited in
the wild. The most accessed attributes are the User-Agent, screen width and height,
plugins list, and timezone. Even if it would be tempting to rely on these to detect
fingerprinting scripts, they can be used for many other purposes, such as analytics
or adjusting a website’s UI to the device. In our dataset, these attributes are used

3https://jsak.mmtcdn.com/flights/assets/js/desktop.3410609e.js

https://jsak.mmtcdn.com/flights/assets/js/desktop.3410609e.js

62
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

Fingerprinters

navigator

canvas

WebGL

font

bot

WebRTC

audio

WebGL2

fa
m

ily

2

3

4
5
6
7
8
9

12

16
20
24
30

40
50

Figure 3.6: Distribution of attributes families across fingerprinters.

by respectively 81%, 20%, 19%, 6% and 13% of non-browser fingerprinting scripts,
respectively. This illustrates the difficulty of identifying reliable attributes to detect
browser fingerprinting scripts.

We analyzed the scripts that use canvas or WebGL fingerprinting. 120 scripts
fingerprint browsers using canvas drawing primitives, using between 2 and 14 different
drawing instructions. We found 44 different drawing sequences. Concerning WebGL
fingerprinting, 54 scripts draw with WebGL primitives, using between 17 and 20 distinct
drawing instructions. Only 7 drawing instruction sequences are different. Moreover,
one single sequence is used by 46 scripts. Concerning fonts enumeration, we measured
54 fingerprinters used this technique. The number of fonts tested ranges from 66 to
594, with 19 different sets of fonts. We observe 2 sets of fonts being largely checked by
fingerprinters: a set of 82 fonts tested by 17 scripts, and a set of 66–69 fonts used by
18 scripts. Thus, even though there is a potentially unlimited combination of testable
fonts, a majority of scripts use similar sets. We believe this is due to these font sets
being copied from one fingerprinter to another, as well as, being sufficient to capture
enough uniqueness. We observed 107 fingerprinters collect at least one bot attribute. The
average number of bot attributes is 5. PhantomJS attributes are the most collected (41%
of all scripts), followed by those that detect Headless Chrome (18–33%) and Selenium
(12–16%).

3.3 Analysis of Secure Web Pages 63

Finally, we observed that the most used attributes belong to the earliest identified for
browser fingerprinting, such as the navigator and screen properties (Eckersley et al. [96]
in 2010) and the canvas (Mowery et al. [122] in 2012). More recent attributes are less
present in our dataset, such as audio and WebRTC (Englehardt et al. [97] in 2016).
We also found one fingerprinting script accessing 9 properties and functions from the
WebGL2RenderingContext object, which is part of the WebGL2 APIs and has not been
studied by the community yet.

3.3.2 Similarities of Browser Fingerprinting Scripts
As we explained previously, our algorithm labeled 169 browser fingerprinting scripts.
Disconnect classifies as browser fingerprinting the inclusion of any piece of code
from the FingerprintJS library [33]. We therefore wanted to study the influence
of FingerprintJS on the browser fingerprinting scripts of our dataset. We ran the
FingerprintJS script in a blank page and monitored the attributes it collects. We
measured the proximity between this script and our browser fingerprinting scripts by
computing the similarity score (Jaccard index) between each of them and FingerprintJS.
We iterated over our browser fingerprinting scripts to see if they could be related with
FingerprintJS by evaluating the following rules:

• the script has a similarity score of 1 with FingerprintJS;
• the script has exactly the same subset of fonts, canvas drawing primitives or WebGL

drawing primitives. As we said in the previous section, the potential possibles
sets of these elements are infinite. Thus, having the same sets of font or drawing
primitives uncover a strong link between these scripts;

• The script contains one of the following keyword: fingerprintjs, fingerprint2, or func-
tions with a specific name: hasLiedBrowser, hasLiedLanguages, hasLiedResolution
or hasLiedLanguages. As a non-negligible proportion of the scripts in our dataset
were obfuscated, the number of fingerprinters matching this rule will probably be
underestimated.

Among the 169 distinct browser fingerprinting scripts included in our dataset, one has
a similarity score of 1—the raw FingerprintJS library present in our dataset. Then, 6, 7,
and 45 browser fingerprinting scripts had the same sets of fonts, canvas drawing primitives
and WebGL drawing primitives, respectively. Finally, the monitored keywords were
found in 60 distinct fingerprinting scripts. After removing the duplicate scripts—those
which were matching several rules—we ended up with a list of 61 browser fingerprinting
scripts having string similarities with FingerprintJS. This result demonstrates the
impact and the central role of this library on the fingerprinting ecosystem.

3.3.3 Origins of Browser Fingerprinting Scripts

64
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

Table 3.1: Distribution of first-party & third-
party scripts per website category.

Domain category # of fingerprinters
First-party Third-party

Flights & transports 24 1
Bank & money transfer 19 1

Ecommerce 9 8
Ads & analytics 17

Security 2 12
CDN 11

Event tickets 8
Travel 7 1

Governmental 7
Technology 1 6

Dating 3
Cryptocurrency & trading 3

Social network 1 1
Job search 2

Adult 1
Unknown 24

Total 82 87

We studied the origins of the browser fin-
gerprinting scripts by looking for their host-
ing domain and additional hints in the
scripts, such as comments. From our 169
distinct browser fingerprinting scripts, 82
are first-party, meaning they are hosted by
the same domain as the pages they appear
in, and 87 are third-party. We did not
detect any browser fingerprinting scripts
being served both as first and third-party.
Concerning the third-party browser finger-
printing scripts, we then uncovered the
owner of the script by browsing on the
website, by using the WhoIs tool, or by
looking for clues in the script comments.

The results are presented in Table 3.1.
We failed to detect the website category for
24 third-party fingerprinting scripts. More-
over, it is difficult to uncover the owner of scripts being hosted on CDNs (11 of the scripts
we identified). We also noticed browser fingerprinting scripts being hosted on domains
with explicit objectives, such as security-oriented (12) or ads/analytics companies (17).
Finally, we detected 121 domains that host fingerprinting scripts. 30 domains host at
least 2 distinct scripts. We believe several reasons can explain this behavior:

• script variants hosted by the same domain yet with a few changes in the attributes
(e.g., 2 scripts hosted by GeeTest4,5 show this),

• several scripts can serve different purposes—ads, bot detection, authentication—
even if they are hosted by the same domain,

• scripts hosted by CDN domains. In our dataset, CloudFront hosts 9 of our
browser fingerprinting scripts.

Regarding the adoption of browser fingerprinting for security purposes, we analyzed the
scripts hosted by domains whose main goal is security. We identified 14 fingerprinting
scripts from 12 security-focused organizations. For each of the organizations, we extracted
their main purpose, and analyzed the presence of their scripts on the sensitive page types
we defined. Table 3.2 reports on these results. All of these security scripts are present in
at least one of our 4 sensitive page types.

We analyzed the attribute families collected by these browser fingerprinting scripts.
All major techniques are being actively used. The navigator and screen properties are

4https://static.geetest.com/static/js/fullpage.8.6.1.js
5https://static.geetest.com/static/js/fullpage.8.8.9.js

https://static.geetest.com/static/js/fullpage.8.6.1.js
https://static.geetest.com/static/js/fullpage.8.8.9.js

3.3 Analysis of Secure Web Pages 65

Table 3.2: Summary of security organizations, with the accessed attributes and the
presence in the web pages of our dataset.

Organization
goal

Organization
name

Script # of
attributes

Script presence on
domains # pages Sign up Sign in Basket Payment

Payment
platform

Adyen 47 1 1 ✓
CentroBill 14 1 1 ✓
Probiller 29 1 4 ✓ ✓
Razorpay 10 1 1 ✓

Secured Touch 73 1 6 ✓

Fraud
prevention

Iovation 8 1 1 ✓
Nudata Security 29 2 3 ✓ ✓

Sift Science 26 10 26 ✓ ✓ ✓ ✓
Simility 49 2 3 ✓

Bot
protection

Datadome 33 1 1 ✓
GeeTest 64-65 4 7 ✓ ✓

PerimeterX 69 1 3 ✓

the most collected (included in 14 scripts), followed by canvas (12), bot (11), WebGL
parameters (10), WebGL drawing (6), audio and font enumeration via span (5), canvas font
enumeration and WebRTC (3). Access to navigator.userAgent, navigator.platform
and navigator.vendor was found in 13 scripts. Because these navigator attributes
overlap, we believe that they are used to detect spoofing. Moreover, we observed 13 scripts
where screen.width, screen.height, screen.availWidth, and screen.availHeight
are collected. These attributes can also be used to detect spoofing, as the available sizes
should be smaller than the width and height. Jonker shows this invariant can detect
bots [111]. The 3 organizations that claim to protect against bots naturally collect bot
attributes. PerimeterX collects 10 of them, and Datadome 5, both covering all
major bot types. However, GeeTest only collects 2 bot attributes, both for detecting
PhantomJS.

3.3.4 Web page type and website category & country impact

Secured vs non-secured web pages. We analyzed the ratio of web page types that
include a browser fingerprinting script. We found browser fingerprinting scripts on all
types of web pages we studied. Basket (33.8%) and Sign-up (31.1%) pages fingerprint
more than the average, followed by content (25.6%), Payment (25.3%), Sign-in (23.4%),
and home pages (23.0%). Other studies have not targeted these specific page types and
have generally relied only on home pages. Consequently, we are—to the best of our
knowledge—the first study to observe the prevalence of browser fingerprinting in sensitive
and secure web pages. We compared fingerprinting in secured to non-secured pages. We
found 54 scripts exclusive to secured pages, 68 scripts exclusive to non-secured pages,
and 47 in both.

66
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

We counted the number of fingerprinting scripts included on a page. Out of 405
pages that fingerprint, 339 pages include 1 script, 51 pages had 2 scripts, and 15
pages had 3 scripts. Out the 66 multi-script pages—i.e., 51+15—10 had first-party
fingerprinting scripts, 27 served fingerprinting scripts from a different domain, and 29
served fingerprinting scripts from both first and third-party domains. We make several
hypotheses based on our observations: i) the browser fingerprinting scripts have different
purposes, such as advertising or security services, and likely do not share the fingerprints
they collect, ii) in the case of pages from websites being developed by several teams,
they may integrate multiple browser fingerprinting scripts unintentionally. A majority
of the pages with multiple fingerprinting scripts are secured pages (35 secured versus
31 non-secure pages) although secured pages represent only 44.2% of our dataset. This
result supports the statement that secured pages fingerprint more aggressively than
non-secured pages.

Website category and country impact. We studied the presence of browser fin-
gerprinting scripts according to the website category. The results report on a wide
disparity in the adoption of browser fingerprinting scripts. The flights & transports
(49%), accommodation & travel booking (40%) and the business websites (37%) are the
websites categories having the highest percentage of integration of at least one browser
fingerprinting script. Oppositely, dating (7%), institutional (11%), and adult websites
(12%) fingerprint the least. For bank and money transfer services, 21% fingerprint their
users, which is close to average (24.4%). Combined with our previous analysis about the
adoption of browser fingerprinting scripts by page type, it seems that the presence or
absence of a browser fingerprinting scripts is driven more by website category than page
type.

Regarding the adoption of browser fingerprinting scripts per website country, we
also observed some variations. Japanese (7%) and Spanish (6%) websites are the ones
embedding the fewest browser fingerprinting scripts. On the other side, 62% of the
Russian websites integrate at least one browser fingerprinting script, far ahead from
American websites (32%), the second category in this ranking. We evaluated the browser
fingerprinting scripts embedded on those Russian websites, and found 22 out of the 24
Russian websites integrating a browser fingerprinting script used at least one of the two
browser fingerprinting scripts provided by Yandex.6,7 We do not know the reasons behind
such a high presence on Russian websites.

6https://mc.yandex.ru/metrika/tag.js
7https://mc.yandex.ru/metrika/watch.js

https://mc.yandex.ru/metrika/tag.js
https://mc.yandex.ru/metrika/watch.js

3.3 Analysis of Secure Web Pages 67

3.3.5 Additional Security Mechanisms
During our data acquisition, we also marked the usage of any additional authentication
factor or bot detection techniques we found. The results are reported in Table 3.3. The
total number of pages in this table is higher than the 1, 486 web pages we reported
initially, because some pages can refer to several types, as we explained in Section 3.1.

Table 3.3: Number of pages including a multi-
factor authentication mechanism or a bot
detection technique, depending on the page
type and the presence of a browser finger-
printing script in the page.

Pages with Pages with
All pages 2FA bot detection

Without With Without With
FP FP FP FP

Sign-up 206 20 1 18 11
Sign-in 197 8 0 7 3
Payment 95 0 0 0 0
Basket 210 1 0 2 0
Home 304 3 0 5 2
Content 586 4 0 3 2
Total 1,598 38 1 35 18

Authentication factors. We observed
39 pages with 2FA schemes, the major-
ity being sign-up pages. 3 distinct factors
were used during our collection: i) an email
OTP or confirmation (used 19 times), ii) an
SMS OTP (17), and iii) a phone call (2),
in which the code to enter on the website
is the last x digits of the calling number.
The usage of an additional factor for sign-
up pages implies a stronger requirement
for proof of identity. Because browser fin-
gerprinting could fulfill this requirement,
we measured the number of browser fin-
gerprinting scripts included in these pages,
compared to other pages. We observe only
1 sign-up page that contains an additional
factor also embedding a browser fingerprinting script. Moreover, this web page also
included a bot detection mechanism. This means the website used on the sign-up page
both an authentication confirmation and a bot detection technique. Thus, the presence
of a browser fingerprinting script might be used to serve either of these purposes, as we
are only observing from the client-side, we cannot conclude.

Bot detection mechanisms. Concerning bot detection, we found 51 scripts using bot
detection mechanisms: 41 ReCaptcha, 6 GeeTest puzzles,8 and 4 textual captchas.
As for the additional authentication factors, they were mainly observed in sign-up pages.
2 pages were using 2 bot detection techniques: a sign-in page on an adult website and a
sign-up page on an event ticket website. Half of the pages with a bot detection mechanism
embed a browser fingerprinting script. This result shows the interest of websites in the
browser fingerprinting technique to detect bots.

Synthesis. In this section, we explored the browser fingerprinting scripts of our dataset,
their presence on the different page types we considered and the adoption of fingerprinting

8https://www.geetest.com/en/demo

https://www.geetest.com/en/demo

68
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

in combination with additional security mechanisms. Our results allow us to answer
RQ1. We show that browser fingerprints are effectively accessed for all the types of web
pages covered by our study. We finally observed that browsers are fingerprinted slightly
more aggressively on secured pages.

3.4 Websites resilience against 2 attack models

In this section, we define 2 attack models and evaluate the resilience of the websites of
our dataset against them.

3.4.1 Stolen credentials

Extracting the protected websites. We observed in Section 3.3 that browser finger-
prints are collected by websites during the authentication process. We are interested in
observing any security improvements brought by fingerprinting in the case of stolen creden-
tials. In our attack model, we assume that a hacker steals a user’s credentials—through
a data leak, a phishing page, or any other technique described in Section 2.2.2—and tries
to authenticate into the targeted website. We reproduced this attack behaviour by trying
to authenticate into the accounts we created for this experiment. It is worth mentioning
that we used a phone number or any additional information needed to create the account,
but we skipped anything that was not mandatory. We assume that the attacker may use
a different browser instance on a different OS, with different cookies than the victim’s
browser, while browsing from a different network than the network associated with the
original accounts. We also assume that the attacker can solve captchas when using stolen
credentials. Therefore, bot detection mechanisms are not a reliable protection in this
context. We ran this attack on the 42 websites we were able to create accounts on—12
of them use a browser fingerprinting script on the sign-in page. The 42 websites are well
balanced concerning the Country tag we defined, and mainly concern cryptocurrencies,
money transfer, e-commerce, adult, event and sport tickets content. Among these web-
sites, 16 of them belong to the Alexa Top 1k, 8 between 1k and 10k, 11 between 10k and
100k, and 7 above the Top 100k. We expect websites that collect browser fingerprints to
use this information to protect the accounts from stolen credentials. Our attempts to
authenticate to the accounts with different fingerprints fell into the following 3 cases:

• we were able to authenticate into 37 websites without facing additional multi-factor
authentication mechanisms or security warnings;

• 3 websites sent a warning message about an unknown authentication attempt to
our account. These messages contained the IP address, the OS and the browser we
tried to connect with;

3.4 Websites resilience against 2 attack models 69

• 2 websites asked for an additional proof of identity. The first one sent an One-
Time Password (OTP) via email with additional information about the ongoing
connection. The other sent an OTP via SMS to validate the connection attempt.
Those 2 websites also proposed a security panel where the user can check their
trusted devices.

We observe that only 5 out of the 42 websites react in a manner that strongly
suggests fingerprint-based detection of known devices and browsers is being used to
secure the account, namely Google, WeTransfer (files transfer service), Skrill,
Crypto and Binance (cryptocurrencies, finances or money transfer websites). 4 of
them have a security panel with the authorized devices with their characteristics and all
the authentication attempts made to authenticate on the account.

Isolating the triggering features As we noticed during our previous experiment,
several details, including the OS, browser and IP address, were provided to the user to
explain the warnings or requirements for additional information to authenticate. The IP
address can be used to extract the approximate geolocation of the user and to detect
authentication attempts from unusual networks (e.g., through a cloud provider). While
the usages of cookies were not indicated in the information given by websites, we believe
the presence of previous session cookies might also be used by the website to decide
to authenticate the users more easily. Their absence might reveal a device or browser
change. As we mention in Section 2.2.5.3, these 4 elements are often used as features
for Risk-Based Authentication (RBA). Thus, we believe we trigger additional security
mechanisms because the risk of our authentication attempts were considered as too high.
As the 5 websites of our previous results seem to use RBA, we tried to isolate the feature
or set of features used by each website to measure the risk level of the authentication
attempt. To do so, we tried the following 6 combinations:

1. we re-authenticated with the same conditions as the ones the account was created
with, to get the ground-truth,

2. we signed-in with the same browser, but using a different IP address than the one
used for the account creation and previous authentication attempt,

3. on a different IP address, using the same browser, we authenticated in using the
browser’s private mode to navigate without reusing any cookies previously set,

4. on the same device, but using a different browser, with a different IP address,
5. we then tried to re-authenticate with a different device and browser, and a different

IP address,
6. finally, we tried to log again on the same device and the same browser as the

previous combination, without deleting cookies or any other stateful data, but we
changed our IP address to reuse the original IP address used to create the account
and authenticate for the ground truth combination.

70
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

Table 3.4: Parameters and results concerning the reauthentication experiment.

Website MFA on
Sign-up

FP on Features combinations

Sign-up Sign-in Ground
truth Diff. IP Diff. IP &

no cookies

Diff. IP,
browser &
no cookies

Diff. IP,
browser,
device &
cookies

Diff.
browser,
device &
cookies

Google Ó Ó Ó + +
Skrill Ó Ó Ó Ó

Crypto Ó Ë Ë + + + + + +

WeTransfer + + + +

Binance Ë Ë + spec. + spec.

We ran the above combinations in order. Browser and OS changes make the fingerprint
different, contrary to IP addresses and cookies that do not affect the browser fingerprint.
If fingerprinting is used as a feature for RBA, as proposed by several studies [130, 87], we
expect to observe different behaviors on the combinations where the fingerprint changes,
namely combinations n°4, n°5 and n°6.

Table 3.4 summarizes up the results we observed according to the changes we applied
to the browsing features. Google, Skrill, and WeTransfer seem to be based on
cookies. When they are not present, the first 2 ask for an OTP, while WeTransfer
sends an alert. Crypto always has the same behavior: it allows the authentication
attempt but sends an alert. Finally, Binance have the most advanced system. First, it
sends an alert about the IP address when we changed it, when browsing without cookies
(combination n°3). The message did not contain any reference to device or browser
changes, so we believed the website knew we were on the same device and browser.
The behavior changed when we used another browser on the same device: Binance
sent us an email containing an OTP and basic information about the new browser used
(combination n°4). It also sent an email with an OTP when using a different device
(combination n°5). When staying on the browser chosen on this second device and using
the same IP address as the one used, we received an alert (combination n°6). Based on
this last experiment, we make 2 observations:

• the alert message is different from the one when we changed the IP address. The
message now mentions a change in the browser and device;

• we received an email alert, but we were still able to authenticate. We believe
this is because the cookies set by the browser were the same as the ones in the
previous combination when we needed to provide an email OTP to validate the
authentication attempt.

In our dataset, we observe browser fingerprinting being used as a feature for RBA
only once, in combination with other identifying techniques, to resist stolen credentials.
As this attack is similar to a user trying to authenticate from a fresh browser, it also
illustrates the additional steps users need to complete to authenticate with a new browser
or a new device.

3.4 Websites resilience against 2 attack models 71

3.4.2 Cookie hijacking
3.4.2.1 Attack design

Cookie hijacking can lead to vulnerable accounts and data leaks [138]. As browser
fingerprinting can be used to identify a browser, we make the hypothesis it can be used
to verify if a cookie has been hijacked and used by a different browser. Our goal is not
to study the existing ways to perform a cookie hijacking. In our attacks, we assume
an attacker was able to steal cookies, no matter the method used—XSS vulnerability,
insecure network exchanges, malicious JavaScript injection. Instead, we aim at studying
the resilience to cookie hijacking by websites in our dataset if browser fingerprinting is
used to protect the accounts. We designed 2 attacks to study cookie hijacking.

Our first attack is session hijacking. As explained in Section 2.2.2, it consists in
trying to authenticate using cookies stolen from an existing user session. We authenticated
to the target site on a first browser, then we extracted the cookies and authentication
page URL and inserted these into a second browser. If the attack works, the second
browser will be authenticated and the session will be in the same state as on the first
browser. If not, the second browser will be stuck on the authentication page.

Our second attack is basket hijacking. The goal is to obtain the same basket as a
user by hijacking their cookies. We filled a basket with a commercial item, and visited
the page summarizing the basket and its content. Similarly to our session hijacking
attack, we then extracted the URL and cookie, and put them in another browser. If the
basket content is the same on the 2 browsers, the attack is successful.

3.4.2.2 Methodology

For each website, we automated the browsing to the required pages with a Puppeteer
instance. We automate the insertion of cookies and the navigation to the URL with
a second Puppeteer instance. We lower the possibility to be detected as a bot by
changing the fingerprint of the Puppeteer instances for them to look like Chrome
84. To do so, we re-used the value of each attribute collected by fingerprinters during
our manual data collection and integrated them into an extension in the Puppeteer
instance that returns the corresponding value when an attribute is accessed. We also
added a delay of at least one second between each action on a page.

Before studying the impact of fingerprint modification, we performed a preliminary
run with and without the collected cookies to make sure that sessions could be stolen
from the Puppeteer instance and that no other parameters, like localStorage or a
hidden parameter in the URL, would impact our measurement. This way, we created
a subset of websites where our attacks are successful. Finally, we ran our attack on
all the websites of this subset and collected the cookies and URLs. We used different
parameters and configurations for the second Puppeteer instances by running them on

72
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

Table 3.5: Number of websites involved in each step of the validation for the session and
basket cookies attacks, and results of the attack on the validated subset

websites
Session Basket

FP no FP FP no FP
Original dataset 12 30 33 51
Cannot automate 0 5 8 8
Anti-bot defense triggered 2 1 3 3
Impacted by other parameters 3 5 6 6
Nothing sold 0 0 7 16
Validated subset 7 19 9 18
Attack works 7 19 9 18

a different device on a different network with a different IP address. We also changed
all the fingerprint attributes we monitored during our data collection by giving them
values from a Firefox 72 instance with the same extension as described earlier in this
section. As explained in Section 2.6.3, browser fingerprinting can be used to enhance
session security by checking the cookies are always associated with the browser instance
which first received the cookies [145, 87]. Should a website be protected and detect the
different fingerprint, we rerun the attack by modifying parts of the fingerprint to detect
which attributes or combinations trigger the defense mechanism.

3.4.2.3 Results

We ran these experiments in July and August 2020. We used the 42 websites we were
previously able to create an account on for the session hijacking attack. Concerning the
basket hijacking attack, we used the 84 websites of our dataset containing at least a
basket page—33 of them contain at least one fingerprinter on a basket page. We then
ran each step of our validation process to make sure the cookies were the only variable
needed to retrieve the basket or session state. The results are presented in Table 3.5.
Because of the time gap between the data collection explained in Section 3.3 and this
experiment, we were unable to fill baskets for several websites with a single item as
some of them were not selling anything anymore. We believe this is likely due to the
economic and societal restrictions following the Covid-19 pandemic. We ended up with
a validated subset of 26 and 27 websites for our session and basket hijacking attacks,
respectively. We then ran our attack and inserted the cookies on a different device on a
different network with a different fingerprint and HTTP headers. With these parameters,
the attacks worked on every website of our validated subset. These behaviors imply no

3.5 Discussion 73

defense mechanism was being used. Thus, browser fingerprinting is not used to protect
against a session or basket hijacking on the websites of our dataset.

3.4.2.4 Usages of cookies protections mechanisms

As we did not detect any usage of additional security mechanisms, we studied the way
HTTPS and HSTS are deployed and how cookies are configured to observe if their
settings were secure enough to protect against traffic sniffing. If these elements are
properly set, it lowers the attack surface on cookies by complicating their extraction via
JavaScript and avoiding their theft from HTTP requests, as explained in Section 2.2.3.
Over the 53 websites (42 + 84 minus duplicates) we tested our attacks on, 52 were
redirecting their traffic through HTTPS and 30 of these 52 websites were setting the
Strict Transport Security response header in the browser. During the experiments,
we collected and injected 1, 080 cookies. Respectively 198 (18%) and 305 (28%) were
HTTPOnly and Secure. We also looked at the SameSite parameter, observing 11 (1%)
and 109 (10%) cookies have a Strict and Laxist SameSite policy, respectively. Even
if the SameSite parameter is now set by default to Laxist since Chrome 80/Firefox
69, few websites were setting it to a secure value, indicating they were added before to
all requests because of the default None SameSite policy.

Based on these observations, we conclude that developers put a lot of trust in cookies
as their presence alone in our tests leads to direct user authentication. This trust is only
possible thanks to strong security mechanisms in browsers that have grown and matured
a lot in the past decade. The rise of HTTPS coupled with a lot of control over what can
be executed on a webpage (through CSP, CORS and all their derivatives) have changed
the way we come to reason about cookie hijacking and how much harder it is to pull off
such an attack today. Yet, our experiment shows that if indeed cookies are stolen, none
of the tested websites have any mechanisms in place to detect any irregularities. We can
only hypothesize at this point that this may not be in the scope of their threat model.

Synthesis. In this section, we designed 2 attack models and tested them to measure the
effectiveness of fingerprinting to protect users on web pages in our dataset. We answer
RQ2 by observing fingerprinting is successfully used to improve security on one website
against our first attack. Concerning our second attack, we did not detect any website in
our dataset that used browser fingerprinting to protect against cookie hijacking.

3.5 Discussion

3.5.1 Intents in fingerprinting usages
In the case of browser fingerprinting, analyzing why a script is included in a web page
and why it is accessing specific attributes is complex as there is little indication of what

74
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

will be done with the collected data once transferred to a server. Still, it is possible to
rely on some signs to capture the intent behind a fingerprinting script, such as:

• Accessed APIs: depending on the goal of the script, some APIs may be picked over
others. For example, anti-bot companies access well-identified bot attributes, while
others interested in cross-browser fingerprinting access OS and hardware-specific
attributes;

• Number of collected attributes: while a very high number of attributes can
often be linked to a fingerprinting behavior, the numbers vary. As seen in Table 3.2,
some third parties, like Iovation, build on only 8 attributes, while others, like
Secured Touch, collect up to 73; As many studies in the state of the art are
interested in either uniquely identifying devices or detecting inconsistencies, it
makes sense to collect as many attributes as possible. Yet, as seen with Iovation,
if you have a clear goal in mind, collecting very few attributes can be enough for
your purpose;

• Execution context: where the fingerprinting script is located can reveal intent.
If a fingerprinting script is included in all web pages, it is probably linked with an
anti-bot system but, if it is only present on a payment page, then it is likely used
for fraud prevention.

Considering the above signals, it is possible to estimate how the collected information
will be used, but it does not provide certainty without having access to the backend
where the browser fingerprints are analyzed.

3.5.2 Fingerprinting is barely used for security

In Section 3.3.3, we identified third-party actors who collect a wide range of data to
implement bot protection and fraud prevention. They protect a website globally against
external threats. Yet, when looking at what is offered to protect user accounts, the story
seems to be very different. Based on our experiments detailed in Section 3.4, there is
little evidence that fingerprinting is currently being used to protect individual accounts.
As we detected fingerprinting scripts delivered by 12 security-oriented organizations, we
would have expected them to add an additional security layer to protect users. This
raises the question of the relevance of using such a script from a security organization
if the final usage is not security. More generally, we tested the defenses of 42 websites
by creating accounts and authenticating with several contexts and parameters. Apart
from some warning messages with few details on the new device, we found only a single
website blocked access to their services when the browser fingerprint did not match.
Moreover, we have not detected any usage of browser fingerprinting to protect against
our second attack, the cookie hijacking. We believe these are negative results of our
paper and deserve further discussion.

3.6 Conclusion 75

First, these results raise the question of why we observed such behaviors. One concern
could be the accuracy of the browser fingerprinting algorithm. While cookies and IP
addresses send strong signals that websites have relied on for years, a fingerprint is, in
contrast, more volatile. It can change due to a minor modification to the browser’s
configuration or an update. Some attributes may be deemed too unstable to be included
for verification, while others are much more reliable and even predictable. As detailed
by Vastel et al. [150], browser fingerprinting techniques require constant adaptation
to maintain their robustness. Another concern is user experience, as having an overly
sensitive algorithm could prompt for additional checks too often, even if the user did not
change their device or browser.

3.5.3 Deficiencies in the state of the art
As we identify concerns about the use of browser fingerprinting in an authentication
system, we believe the state of the art currently lacks studies to measure the effectiveness
and reliability of RBA or MFA with browser fingerprinting. First, as mentioned by
Preuveneers [130], users would need a way to add a new fingerprint to their account to
be able to authenticate with another device. Websites in our dataset seem to use an
OTP email. We believe other options should be studied because each authentication
system is different and has its own trade-offs. Also, fingerprints evolve over time, and an
authentication system should be able to tell if a fingerprint is an evolution of an already
registered one or not. While solutions have been proposed to compute a fingerprint
evolution [150], it has been shown to not be fast enough when confronted with a large
dataset [119]. Used in an authentication context, it would require a quick decision to have
a negligible impact on the user experience. An interesting study has been proposed by
Alaca et al. [87] about the requirements of such a system, but due to the rapid evolution
of the web ecosystem, the study might be outdated. Finally, the state of the art lacks an
evaluation of the user experience, satisfaction, and confidence when using this kind of
system.

3.6 Conclusion
In this chapter, we studied the adoption of browser fingerprinting for security applications.
More specifically, we analyzed 4 types of secured web pages—sign-up, sign-in, basket,
and payment—that process sensitive personal data. We considered the state-of-the-art
JavaScript attributes and developed an extension to monitor browser fingerprinting
attribute accesses. To avoid biases introduced by automated crawlers and bots, we
manually visited 1, 485 pages published by 446 websites, and created accounts, authen-
ticated to verify authentication procedures, and went through the payment processes

76
FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web

Security

where available. We designed and implemented a script classification algorithm based
on accessed APIs, and labeled 169 distinct browser fingerprinting scripts. We observed
these fingerprinting scripts being served by all types of secured pages and various website
categories, which answers our RQ1. We analyzed the script providers and found 12
security-focused organizations that use browser fingerprinting in secured web pages. We
measured the use of additional authentication factors and bot detection mechanisms,
showing fingerprinting is used in combination with several bot detection techniques. We
defined 2 attack models, stolen credentials and cookies hijacking, and evaluate websites
in our dataset against them. Finally, we answer RQ2 by observing very little usages of
fingerprinting to secure websites against these 2 attacks.

Chapter 4

FP-Controlink: Studying
fingerprinting under a controlled
environment to link fingerprints

One of the main challenges for an authentication scheme using browser fingerprinting is
to properly link fingerprints sent by the same browser instance over different sessions.
As fingerprints evolve over time, it is essential to take into account possible changes
and anticipate them. Vastel et al. [150] have developed an algorithm to link browser
fingerprints, but they did not focus on the authentication challenges, nor did they take
into account the real-time constraints required by an authentication system like speed or
precision. Finally, the lack of understanding of browser fingerprints semantics is also a
strong obstacle to relevant and reliable linking solutions. In this chapter, we perform the
first complete measurement study of browser fingerprint diversity and evolutions in a
controlled environment. We reproduce the experiments made by Al-Fannah et al. [86]
and study more in-depth the different components responsible for browser fingerprints
diversity and evolution. This notion of controlled environment is a keystone, as it gives
us the ability to attribute a precise change in a fingerprint to a very specific hardware or
software component. By knowing the exact composition of a system from its software to
its hardware, we are able to understand what is causing a specific change in a fingerprint
and include it in an authentication logic to better link fingerprints together.

In Section 4.1, we design an environment using desktop and mobile devices to study
browser fingerprints under controlled parameters. We assemble a ground truth from 4
desktop and 23 mobile devices and collect a total of 1, 160 fingerprints. In Section 4.2, we
provide a desktop and mobile evaluation of browser fingerprint uniqueness. We show that
the fingerprints uniqueness is a consequence of the diversity of the devices, from the OS
and browser components to the user configuration. In Section 4.3, we follow the evolution
of browser fingerprints through browsers versions. We show evolutions are inducing

78
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

side effects that can be explained and monitored, and demonstrate these evolutions can
be anticipated via browsers nightly and beta versions weeks before being applied on
release versions. In Section 4.4, we leverage this dataset to design a rule-based browser
fingerprints linking algorithm that is tailored for web authentication. In Section 4.5,
we evaluate it using 952, 828 fingerprints collected from 64, 235 browser instances. We
measure our algorithm ability to correctly link a browser fingerprint to its predecessors
that originate from the same browser instance. We observe our algorithm to be both
relevant and reliable to serve on an authentication system using browser fingerprinting.
We discuss our results and their limitations in Section 4.6 and conclude in Section 4.7.

4.1 Methodology

4.1.1 Controlled environment
4.1.1.1 Different layers

A fingerprint carries information about the device and browser installed by a user. Users
can configure their device and browser according to their needs and preferences. This
leads to a large pool of devices and associated configurations. The uniqueness property
of the browser fingerprinting technique derives from this diversity. When previous work
studied the uniqueness property of browser fingerprints [96, 117, 103], they relied on a
dataset collected in the wild for their measurements. In this context, they can study
the global uniqueness percentage of browser fingerprints of a given population, but
cannot explain the semantic of fingerprints and the causes responsible for this fingerprints
diversity. Similarly, studies covering browser fingerprints stability or building linking
tools observed and measured changes on fingerprints collected in the wild [150, 119].
These studies can evaluate linking tools, but cannot explain the reasons behind browser
fingerprints evolution. We propose to study several elements—namely layers—that are
responsible for this diversity. We believe this can help understand the differences between
two browser fingerprints and guide the selection of attributes to reinforce authentication.

Hardware. Several studies already mentioned the link between hardware and browser
fingerprints [117, 93]. Two fingerprints can be different because the hardware of the
devices on which the fingerprints were collected are different. More specifically, we believe
the canvas, audio, and WebGL attributes are CPU and GPU-sensitive. Thus, we wanted
to collect fingerprints on devices with different hardware for our experiments.

OS. An operating system manages the hardware and software resources of a device.
Using one OS rather than another could impact the way resources are managed, leading
to a different behavior when using browser APIs. This could be materialized by different

4.1 Methodology 79

values for the same attributes. We collected fingerprints on both desktop—Windows,
MacOS and Linux—and mobile—Android and iOS—OS.

Browser. As browsers can have different API supports, we naturally checked several
browsers. We first built our list of browsers by including the browsers with more
than 1% browser market share in January 2021,1 namely Firefox, Chrome, Edge,
Safari, Opera, and Samsung Browser. We also added Brave, which has specific
anti-fingerprinting defenses [17].

User configuration. Users can alter their browser fingerprints. First, they can con-
figure their browser and device with their preferred language, timezone, and specific
permissions. They can also use browser defenses to hide values or change them to
reduce the identification surface [36, 17]. For these reasons, we evaluated the browser
fingerprinting defense of Firefox and Brave. We also had a look at browser and device
configurations and their impact on browser fingerprinting.

4.1.2 Browser versions
As we mentioned in Section 2.3.2, fingerprints evolve over time. This cannot be considered
as a layer of a fingerprint as the change is temporal. It is due to an evolution over time
rather than a difference in the environment. However, it is a key element to take into
consideration, as browsers are updated every 4 to 6 weeks [25, 38]. Changes browsers
introduce during updates must be reflected in the fingerprint. In this context, we studied
different versions in order to rely on stable attributes to link fingerprints. We targeted
Firefox and Chrome for this experiment as they are the only browsers with easily
available versions history and packages.

4.1.3 Attributes
We considered the attributes from the state of the art for our experiment. Thus, we
considered the navigator and screen properties [96, 117, 125, 123], the fonts enumeration
via span’s width and height measurement [125], canvas [122], audio [97] and WebGL
rendering [93], WebGL parameters [117] and WebRTC [97].

We also collected several additional attributes, because we believe they can be relevant
for fingerprinting. To the best of our knowledge, these attributes are not reported in the
literature. We believed they could have different values on different contexts and devices,
leading to an identification and consistency gain for the browser fingerprinting technique.
The additional attributes we collected are:

1https://gs.statcounter.com/browser-market-share

https://gs.statcounter.com/browser-market-share

80
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

• audio & video formats. Browsers support audio and video formats to display
multimedia content to users. We believed different browsers could support different
formats. A format support test is performed via the HTMLAudioElement and
HTMLVideoElement JavaScript APIs. We tested 21 audio and 8 video formats.

• permissions. This JavaScript API helps websites to know if it can use a specific
API. It allows users to control the access to some sensitive APIs, such as the
geolocation, notification or clipboard APIs. The API can return 3 possible
values: i) granted which indicates the API is accessible, ii) prompt meaning a
usage of this API is subject to user validation, and iii) denied which indicates the
API is not accessible. We tested 15 permission names.

• audio parameters. Besides audio data [97], we collected various audio parameters
via the AudioContext and AnalyserNode APIs. We believe these audio parameters
could differ from one device or OS to another.

• additional WebGL parameters. Laperdrix et al. [117] collected the WebGL
vendor and renderer. We collected additional WebGL parameters, such as the
extensions available via the WebGLRenderingContext, as we think they could be
different between two graphic cards or two OS.

• navigator & window properties. We collected the list of properties of the
navigator and window objects. As they carry the APIs available in the browser,
we believe they can differ from one browser to another.

4.1.4 Data collection
Desktop automation. On desktop, we setup an infrastructure to automate our data
collection. We first develop a bash script to collect the ground truth of the device,
including the CPU, GPU information, the OS name and version, the device brand and
model. We then developed other bash scripts to perform browser download, installation,
and start without user interaction. Each information of the ground truth is formatted
into a URL parameter and concatenated at the end of the URL of our server we start our
browsers on. Once the browser has loaded the page of our server, a script automatically
collects the associated fingerprint, parses the URL parameters containing the information
of the device and sends the fingerprint and the device information to the server that stores
them in a database. While the browser is technically launched without user interaction,
it runs the binary of the browser as if it was started by the user. Thus, our browsers
are the vanilla ones and are not headless browsers, which have been studied to have a
different fingerprint [111].

Environment. The desktop environments on which we ran our experiments are pre-
sented in Table 4.1. We ran the majority of our experiments on 2 desktop devices running
Ubuntu 20.04. We completed this setup by collecting data on Chrome, Firefox and

4.1 Methodology 81

Table 4.1: Recapitulative table concerning the desktop devices, OS and browsers on
which we run our experiments

Device CPU & GPU OS Browser
Name Version Configuration

Dell Latitude E6510 Intel Core i7 CPU M 640
Intel HD Graphics

Ubuntu 20.04

Chrome rel: 76 to 90
beta: 80 to 90 Default + custom

Firefox rel: 29 to 88
b/n: 74 to 83

Default + custom
+ FP flag

HP-ZBook-15u-G2 Intel Core i7-5500U
Intel HD Graphics 5500

Opera 74 Default
Edge 90 Default
Brave 89 Default + FP blocking

MacBook Air Intel Core 2 Duo L9600
NVIDIA GeForce 320M MacOS 10.13.6

Chrome 90 Default + custom
Firefox 88 Default + custom
Safari 13 Default

Acer Aspire V Nitro Intel Core i7-6700HQ
Intel HD Graphics 53 Windows 10 Chrome 90 Default + custom

Firefox 88 Default + custom

Table 4.2: BrowserStack devices with OS, OS version and browsers used for the mobile
dataset.

OS Brand Model OS ver. Brw.

Samsung

Galaxy S21 11
Galaxy S20 10
Galaxy S20+ 10
Galaxy S20 Ultra 10
A51 10
Note 20 10
Note 20 Ultra 10
A11 10

Google
Pixel 5 11
Pixel 4 10-11
Pixel 4L 10

OnePlus OnePlus 8 10
Xiaomi Redmi Note 8 9
Huawei P30 9

Apple

iPhone 12 Mini 14
iPhone 12 Pro max 14
iPhone 12 Pro 14
iPhone 12 14
iPhone 11 13-14
iPhone 8 13
iPhone XS 12-13-14
iPad Pro 12.9 2020 12-13-14
iPad Pro 11 2020 13

82
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

Safari on MacOS and Windows. On Firefox and Chrome, we ran additional
configuration tests including changing the languages and the Do Not Track parameter.

We also ran our experiments on mobile devices using the BrowserStack online
infrastructure.2 The complete set of devices we used is available in Table 4.2. We
collected a total of 1,160 fingerprints from 4 desktop and 23 mobile devices. The following
sections aim at studying this dataset to build a browser fingerprints linking algorithm.

4.2 Causes of fingerprints diversity
In this section, we present the results observed concerning the diversity observed on our
fingerprints dataset. Rather than being explicit about all the changes we observed, we
aimed at explaining the causes of fingerprints diversity. We believe this will help us
understand the semantic of the browser fingerprints to better build our linking algorithm.

We measured many differences between desktop and mobile fingerprints. The changes
observed concern APIs that are not supported on both environments—represented
by the window and navigator properties list—or APIs that return different values—
maxTouchPoint, plugins or mimeTypes. For these reasons, we decided to split this
evaluation in two parts: the desktop and mobile evaluations.

4.2.1 Desktop evaluation
We first present our observations about the fingerprints diversity in our desktop dataset.
We collect a total of 121 fingerprints on the desktop devices of our controlled dataset.

4.2.1.1 Hardware

The diversity of attribute values due to hardware either concerns rendering attributes
or attributes giving information about the capabilities of the machine. The rendering
attributes include the audio, canvas and WebGL rendering, as their names state. In the
second category, we observe the hardwareConcurrency navigator property, the screen
sizes, the WebGL renderer, vendor and parameters and the audio parameters. The
WebGL renderer and vendor attributes were not only impacted by a change in the
hardware, but also when changing from a browser to another. On Chromium-based
browsers, the WebGL vendor always starts with Google Inc. whether the graphic card
was an Nvidia or an Intel Graphics. Similarly, the WebGL vendor is either Google
SwiftShader or starts with ANGLE. SwiftShader is an implementation of the Vulkan
API [73], while ANGLE is an engine to convert OpenGL graphic calls to one of the
API supported by the current platform. These values illustrate the importance of the
software layers above the hardware for graphic rendering.

2https://www.browserstack.com/

https://www.browserstack.com/

4.2 Causes of fingerprints diversity 83

More generally, we did not observe any attribute whose value is only impacted by
a difference in the hardware. Among the ones impacted by the hardware, all of them
depend on at least another layer which is often the browser. For example, while a different
GPU will be directly reflected in the WebGL renderer attribute, a change of browser will
modify the backend rendering system and modify the content of the renderer string. We
believe this is an interesting challenge for browser fingerprinting to find attributes that
identify the hardware and are not impacted by any other device component.

4.2.1.2 OS

In our dataset, we observe the OS layer being responsible for different values on several
aspects. First, it changes the attributes giving explicit information on the OS of the
device, represented in our dataset by 4 properties of the navigator object: appVersion,
platform, userAgent and oscpu—the last one being deprecated and only available on
Firefox.

A different OS also provides different APIs in the browsers of our dataset. This change
can be measured via the properties included in the window object. On the devices running
Ubuntu, Firefox was missing the VR-related events. These APIs were implemented on
version 55 on Windows and 64 for MacOS, but are now deprecated [61] and replaced
by the WebXR API. Until this API is removed, it represents another fingerprint difference
caused by a difference in the OS of the device. Similarly, Chrome supports different APIs
depending on the OS:

• on Windows, we found the BluetoothUUID property and the APIs to easily
manipulate audio data such as AudioDecoder, AudioEncoder, AudioFrame and
EncodedAudioChunk,

• on MacOS, we only detected the BluetoothUUID property,
• we did not detect any of these properties and APIs on Linux.

This illustrates the differences in API support on different OSs and shows how an algorithm
can leverage these differences to easily distinguish OSs and better link fingerprints with
one another.

4.2.1.3 Browser

Browser fingerprinting relies on the APIs provided by browsers to collect information.
Thus, it is not surprising to observe a large number of changes from one browser to another.
We distinguish 3 major causes responsible for a fingerprint to change between 2 different
browsers: i) a fingerprinting defense altering the collected value, ii) implementation
differences, and iii) differences in APIs support.

Fingerprinting defenses. As explained in Section 2.5, fingerprinting defenses alter
the attribute value to make the user less identifiable, either by reducing the uniqueness

84
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

of a value or by breaking its stability over time. In this paragraph, we study the defenses
deployed by browsers by default. Brave developed several countermeasures to its millions
of users based on randomization [15]. By default, Brave randomizes the content of
the plugins, mimeTypes, and hardwareConcurrency properties and the result of canvas
and WebGL rendering by flipping few dozens of pixel to a different value. These changes
are not visible as the generated pixels are extremely similar to pixels before the changes.
Only a single color of each pixel is changed by mitigating its float representation with an
offset of ±0.4.

Firefox and Safari also protects their user bases by not supporting the getBattery
API. Researchers showed this API exposes a fingerprinting surface that can be leveraged
to identify users in short periods of time [126, 127]. This can be used to track users,
or for identifiers respawning. In consequence, the API has been revised and removed.
Finally, Safari does not implement the hardwareConcurrency navigator property.

Implementation differences. These differences concern APIs that are supported
by browsers, but the value has not been defined by an official standard, leading to
unique implementations. By default, the doNotTrack property is set to unspecified on
Firefox, true on Safari and is an empty string on Chromium-based browsers. The
productSub property has been set to a fixed number for privacy reasons, but the value
differs from Firefox (20100101) to other browsers (20030107).

Table 4.3: Number of plugins and unique
plugins supported by browsers, on Ubuntu
20.04

Browser # plugins Unique plugin names
Firefox 0
Chrome 3
Safari 3 WebKit built-in PDF
Opera 3 News feed handler

Edge 3 Microsoft Edge PDF Plugin
Microsoft Edge PDF Viewer

Brave 4 Brave PDF and PS plug-in

Similarly, the plugins property is im-
plemented on all browsers, but returns an
empty list on Firefox, and a list with
different elements for other browsers. In
fact, we observed the plugins property
being unique on the 6 browsers we tested
on Ubuntu 20.04. The values observed are
presented in Table 4.3. We made a simi-
lar observation for the mimeTypes. These
attributes are no longer needed for non
Chromium-based browsers, as Flash was
removed from browsers [24]. However, they

will continue to help identify the user’s browser until their removal.
The audio rendering is only supported by default by Firefoxand Edge. For the

other browsers we tested, the AudioContext API must be triggered with a user gesture
and is not usable directly when the users lands on a page. This has been promoted to
prevent autoplay and improve the user experience [20, 72].

Differences of APIs support. Several differences are due to the support or non-
support of APIs. This is generally because the API is not standard, either because it is

4.2 Causes of fingerprints diversity 85

deprecated or because it is still experimental. Among the deprecated APIs, Firefox
implements the properties top and left on the screen object and the property oscpu
on the navigator object.

The Permission API is still considered as experimental. Safari does not support
it, Firefox supports a limited number of permissions—geolocation, notifications,
persistent-storage and push among those we tested—and Chromium-based browsers
support 7 additional permissions compared to Firefox.

Finally, we also observed differences due to API names. Firefox implements the
mozRTCPeerConnection API, while Chrome implements the webkitRTCPeerConnection
API. Both of them were experimental APIs for the RTCPeerConnection API, which
is now supported by both browsers and an official recommendation. Browser vendors
often prefix experimental APIs to avoid a compatibility issue during the standardization
process [60]. However, these differences can easily be used to check the real browser
name without relying on easily-spoofable attributes.

4.2.1.4 User configuration

While the diversity of fingerprints is mainly caused by the natural diversity of hardware,
OS and browser combination, it is increased by the user’s configuration. Fingerprints
can be changed by the usage of a fingerprinting defense or a change in the browser or
device configuration.

Defenses. Browsers have developed defenses to protect against fingerprinting. We
already presented the default defenses of Firefox, Brave and Safari, but Fire-
fox and Brave propose additional defenses. On Firefox, users can activate the
resistFingerprinting flag to unify several attributes and block access to others [36].
It randomizes the canvas and WebGL rendering output, sets the number of media devices,
hardwareConcurrency, User-Agent, WebGL parameters to fixed values, and prevents
to access to the WebGL vendor and renderer. The fingerprinting defense of Brave has
3 possible levels:

• the default level uses the defenses presented earlier in this section,
• the disabled one removes the protection of the default level,
• the strict mode goes further than the default level. It gives back an empty

value for the WebGL rendering, does not support WebGL extensions, renderer and
vendor and fixes all WebGL precisions to 0.

Configuration. We also observed device configuration to have an impact on the browser
fingerprint. When first installed, the browser gets the languages and the timezone of the
device. When the timezone is updated on the device, it is automatically updated in the
browser. Oppositely, the languages in the browser are not updated when they are changed

86
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

on the device. Finally, configuring the browser may also change the browser fingerprint.
Users can update their preferred languages, doNotTrack setting and permissions. These
changes are reflected on the corresponding attributes.

Context. Finally, the user context can change the fingerprint. When a user plugs her
device to a screen, the fingerprint of the browser can be changed. As more and more
external devices can be connected to a device, such as a gamepad, a VR headset or
screens, APIs developed to support these devices will continue to add entropy to browser
fingerprints [23].

4.2.2 Mobile evaluation
We proceed to present our results concerning our mobile dataset.

4.2.2.1 OS and browsers

We observe the OS has a major influence on browser fingerprints on our mobile dataset.
We first aim at studying the differences between devices running on Android and iOS,
no matter which browser is running on them. Besides the appVersion and userAgent,
we detected 8 techniques to easily distinguish the mobile OS of the devices in our dataset.
The results are presented on Table 4.4.

Table 4.4: Attributes that are different be-
tween Android and iOS, and corresponding
value(s). Each value has been observed for
all browsers tested on the specified OS.

Attribute Android iOS

Audio & video
formats

audio/3gpp
audio/3gpp2
audio/basic
video/webgm

audio/ogg
audio/webm
video/mp4

Audio params Supported Not supported

nav.platform Linux armv8l
Linux aarch64

iPhone
MacIntel
iPad

nav.vendor Google Inc.
<empty value> Apple Computer, Inc

permissions Supported Not supported
colorDepth
pixelDepth 24 32

webGL renderer Adreno(TM)506
Mali-G76,...

Apple GPU
Apple A12 GPU
Apple A12X GPU

webGL vendor ARM
Qualcomm Apple Inc.

iOS. Almost all attribute values are uni-
fied between Chrome and Safari on
iOS. Apart from the appVersion and
userAgent attributes, we did not identify
a single attribute that could distinguish
between Chrome and Safari. This be-
haviour was expected, as all browsers on
iOS must use the WebKit rendering en-
gine [7].

Browser fingerprints also change when
the iOS version differs. Among others,
the maxTouchPoints property was not sup-
ported on iOS 12 and returns 5 on iOS 13
and 14. iOS 14 also supports 4 additional
WebGL extensions compared to iOS 12
and 13. Some of these changes may be
directly linked with an upgrade in hard-
ware components between models where

4.2 Causes of fingerprints diversity 87

more powerful chips offer more modern fea-
tures. In the end, these results illustrate
additional functionalities brought by a newer OS version are reflected in the browser
fingerprint, increasing the fingerprints diversity.

Android. Oppositely to iOS, we detected many attributes being different between our 3
mobile browsers on Android. We measured an additional change than the ones observed
on the desktop environment between Firefox and Chrome. Firefox does not activate
the anti-aliasing WebGL parameter. This information can be observed in both the
WebGL parameters itself and on the WebGL rendering attribute value. This property
is activated by default on all the desktop browsers, and all the other mobile browsers
we tested. Additionally, when we activate this property in the WebGLRenderingContext
API, the value returned by the WebGL rendering attribute is equal to the value given
by default by Chrome and Samsung Browser on the same device. We make 2
observations from this result: i) configured similarly, the WebGL rendering attribute
value is cross-browser, and ii) this implementation difference can easily identify a mobile
Firefox instance.

4.2.2.2 Hardware

The attributes being impacted by a change in the hardware were the same as the one
presented for the desktop environment, except from the hardwareConcurrency, which
does not vary according to the hardware of the mobile device. We observed 25 canvas
distinct values and 15 WebGL values among the 23 devices we tested. While the WebGL
is always cross-browser—except for Firefox because of the anti-aliasing parameter
we described earlier, the canvas often changes from a browser to another leading to more
diversity from the canvas than WebGL. This result might be linked to the particular
sets of instructions of the canvas and WebGL rendering attributes of our experiment.
Other sets of instructions could trigger different drawing components, leading to different
results.

4.2.3 Layers responsible for an attribute change
We summarized our findings about the layer(s) responsible for an attribute change.
Table 4.5 represents our results to measure the layer(s) impacting the value of an attribute,
or differently formulated, it represents the layers identified by an attribute. ✓ means the
value is impacted by this layer on both desktop and mobile devices. Ó and B specifies
the value changes only on mobile and desktop devices, respectively. While we discuss 4
layers—namely hardware, OS, browser and user configuration—in Section 4.1.1.1, we
added the Other layer for the font attribute, which has been observed to vary when

88
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

installing new software on the desktop device. Concerning the user configuration layer,
we made the distinction between the 3 major events that can cause a change in an
attribute value: i) browser/device configuration, ii) context, or iii) a fingerprinting
defense. The configuration and context increase the diversity of the fingerprint because of
the number of possible values it offers. Oppositely, a fingerprint defense changes the value
of an attribute, generally by setting the attribute to a defined value, as we explained in
Section 4.2.1.4. This leads to a decrease of the possible values for the attributes that can
be impacted by a fingerprinting defense. Then, we consider an attribute identifies the
user configuration only if the attribute identifies the browser/device configuration or the
context.

The more layers an attribute identifies, the more interesting the attribute is for an
authentication system with browser fingerprinting because it helps the system relying on
diverse attributes to have a fingerprint as unique as possible. In this context, we define
L(a) as a function taking an attribute as a parameter, and returning the number of layers
it identifies. In addition, we define Lm(a) and Ld(a) being two derivative functions that
only consider the mobile and desktop results, respectively. Table 4.5 also presents these
functions when given each browser fingerprinting attribute.

Synthesis. In this section, we treat RQ3 by understanding how the different elements–
hardware, OS, browser and configuration—of a device were responsible for the fingerprints
diversity. We observed browser fingerprinting to be an engineering side effect, caused by
various factors: differences of APIs support or implementation, different default values
or configuration changes. Understanding the causes of the diversity will help us rely on
attributes that identify several components of the device for our browser fingerprints
linking algorithm.

4.3 Fingerprints evolution through browser versions

As browser fingerprints evolve over time, stability is a key aspect to consider when using
browser fingerprinting in an authentication system. In this section, we proceed to study
the evolution of browser fingerprints. We continue the work started by Li et al. [119]
concerning the causes of the evolution of a fingerprint. Our controlled environment allows
us to be more accurate, as we control the software and hardware layers of our devices.
In this context, we observe the changes brought by natural updates of Firefox and
Chrome. In order to better understand where these changes come from, we also look
into the Firefox and Chrome bug trackers to find resources related to the fingerprint
changes we observed.

4.3 Fingerprints evolution through browser versions 89

Table 4.5: Layer(s) impacting the value of an attribute, and category of our attributes.

Hw OS Bw Oth User config.
C(a) Ld(a) Lm(a) L(a)cfg ctx def

canvas ✓ ✓ ✓ ✓ stable 3 3 3
webGL data ✓ ✓ ✓ ✓ stable 3 3 3
webGL parameters ✓ ✓ ✓ ✓ stable 3 3 3
webGL vendor ✓ ✓ ✓ ✓ stable 3 3 3
webGL renderer ✓ ✓ B ✓ stable 3 2 3
nav.maxTouchPoint ✓ Ó stable 1 2 2
screen.colorDepth ✓ Ó stable 1 2 2
screen.pixelDepth ✓ Ó stable 1 2 2
audioData ✓ ✓ stable 2 2 2
screen.height ✓ Ó ✓ ✓ volat. 2 3 3
screen.width ✓ Ó ✓ ✓ volat. 2 3 3
mediaDevices ✓ B ✓ stable 2 1 2
font ✓ B B ✓ stable 3 1 3
nav.appVersion ✓ ✓ ✓ evolv. 2 2 2
nav.userAgent ✓ ✓ ✓ evolv. 2 2 2
window.properties ✓ ✓ ✓ evolv. 2 2 2
audio parameters ✓ ✓ stable 2 2 2
nav.platform ✓ ✓ stable 2 2 2
nav properties ✓ ✓ evolv. 2 2 2
nav.hardwareConc ✓ B stable 2 1 2
permissions Ó ✓ ✓ volat. 2 3 3
audioFormats Ó ✓ stable 1 2 2
navigator.vendor Ó ✓ stable 1 2 2
videoFormats Ó ✓ stable 1 2 2
nav.oscpu B ✓ stable 2 1 2
nav.mimeTypes B B stable 2 0 2
screen.left ✓ ✓ ✓ volat. 2 2 2
screen.top ✓ ✓ ✓ volat. 2 2 2
battery ✓ stable 1 1 1
nav.buildID ✓ stable 1 1 1
nav.productSub ✓ stable 1 1 1
screen.availHeight Ó ✓ ✓ volat. 1 2 2
screen.availLeft Ó ✓ ✓ volat. 1 2 2
screen.availTop Ó ✓ ✓ volat. 1 2 2
screen.availWidth Ó ✓ ✓ volat. 1 2 2
nav.doNotTrack B ✓ ✓ volat. 2 1 2
nav.deviceMemory B stable 1 0 1
plugins B stable 1 0 1
timezone ✓ ✓ ✓ volat. 1 1 1
nav.language ✓ ✓ volat. 1 1 1
nav.languages ✓ ✓ volat. 1 1 1

90
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

4.3.1 Release versions

We first study the evolution between release versions. As explained in Section 4.1, we
study Firefox between versions 29 and 88 and Chrome between versions 76 and 90.
All changes in the collected fingerprints were observed on the release of a major version,
except for one. The only exception is a bug disabling WebGL on Firefox 68.0 on our 2
devices running Ubuntu. It was quickly reported and fixed in version 68.0.2 [49]. As
stated by the Firefox release policies, major versions contain additional features while
minor versions only fix issues and bugs [35]. This accentuates the statement that browser
fingerprinting is coming from an engineering side effect rather than from issues and bugs.

Rather than grouping the changes by major version number, we group them by root
cause. We define 4 root causes that can be responsible for a browser fingerprint evolution
on a release version: i) the support of a new API, ii) the removal of a deprecated API,
iii) a privacy change, mainly to decrease the entropy of an attribute value, and iv) an
evolution in the implementation.

We do not aim at being exhaustive on every change and focus on specific ones that
we deem to be the most interesting. At the end of the section, we provide a more global
overview of the observed changes.

New API support. We observed that the number of supported WebGL extensions
increases from 18 to 25 extensions on Firefox and from 23 to 33 on Chrome. This
illustrates the addition of new features to allow more complex WebGL rendering tech-
niques. We also observed that Firefox added support for the following audio and video
formats:

• audio/flac and audio/ogg; codecs="flac" on version 51 [42],
• audio/mpeg on version 71 [40],
• audio/aac, audio/mp4; codecs="mp4a.40.2" and video/mp4; codecs="flac"

on version 86.
Finally, Chrome and Firefox added properties in the navigator object and APIs in
the window object in almost every new release versions. For example, the getBattery
API was added on Firefox on version 43.

Remove deprecated/non-standard APIs. We also measured the removal of depre-
cated properties on the navigator and window objects. For example, we observed the
navigator.battery API being removed on version 50 because it was no longer needed as
the new API getBattery was available since version 43 [44]. The registerContentHandler
was removed from the navigator object on version 62, because it was non-standard and
Firefox was the only browser implementing it [45].

4.3 Fingerprints evolution through browser versions 91

Privacy change. We explained in Section 4.2.1.3 that Firefox does not support the
getBattery API to protect its users. We detected that this change happened in version
52 [46]. Additionally, we observed the navigator.buildID attribute to be related to the
major version from version 29 to 63. From version 64, it has been set to a fixed value for
all versions to decrease its entropy [41].

Implementation evolution. Finally, changes in the rendering elements—audio, fonts,
canvas—are more difficult to understand and we decided to group them under a generic
implementation evolution category.

On Firefox, we observed 4 versions changing the list of fonts: versions 34, 43, 44,
and 45. 3 of these versions—34, 43 and 45—considered 3 fonts being added and/or
removed (Arial Narrow, KacstDecorative and Padmaa). On version 44, 14 fonts were
added while 4 were removed. Several fonts added or removed seem to be related to emoji
rendering, such as Apple Color Emoji or Segoe UI Emoji, but we did not find any
resource about these changes to confirm our thoughts.

The canvas value changed 9 times. For 7 of them, the rendered text changed. We
assume it is a font update or upgrade, but we were not able to find any resource related
to these changes to verify this hypothesis. For the last 2, the rendered emoji presented
differences because of an emoji font change. First, on version 59, the emoji changes from
a non-colored to a colored emoji. A colored emoji font—namely EmojiOne—was present
on Firefox since the version 50 [48] but the fonts used to render text—in our case,
DejaVu and Arial—had the rendering priority and rendered a non-colored emoji until
version 59. From that point, Firefox defined a list of fonts called in priority to render
emojis [39]. The second change occurs when updating to version 61. The EmojiOne font
had a new version with a license being non-compatible with Mozilla’s standards [47].
While several solutions were proposed, Firefox developers decided to replace the emoji
font by Twemoji. This change illustrates browser fingerprinting can even be impacted
by a license change on a web component.

General observations. We observed a total number of 212 attribute values changes
on 59 version updates of Firefox and 58 attributes changes on 15 version updates of
Chrome. We present the number of changes per version in Figure 4.1. The number
of changes is quite stable, mostly varying from 1 to 5 since version 64, out of a total
of 56 attributes. When building our browser fingerprints linking algorithm, it shows
we can expect to be able to link 2 browser fingerprints up to 2 following versions. The
only exception is version 85 on Chrome on which we observed 9 changes compared to
version 84. It is mainly related to a huge change on WebGL that impacted the 4 WebGL
attributes. While we expect this kind of change to be occasional, it shows we cannot
fully consider an attribute as immutable, as the WebGL renderer and WebGL vendor
changed in this specific case.

92
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

Figure 4.1: Number of attribute value changes per version grouped by browser out of a
total of 56 attributes in our experiments.

30 35 40 45 50 55 60 65 70 75 80 85 90
Major version number

1
2
3
4
5
6
7
8
9

Nu
m

be
r o

f a
ttr

ib
ut

e
ch

an
ge

s Browser
Firefox
Chrome

Figure 4.2: Number of changes per attribute per browser. Only attributes that have
changed at least once during a version update are shown on this graph.

na
v.la

ng
ua

ge

na
v.h

ard
ware

Con
..

vid
eo

For
mats

web
GL d

ata

web
GL r

en
de

rer

web
GL v

en
do

r

au
dio

 fo
rm

ats

au
dio

 pa
ram

s

med
iaD

ev
ice

s

pe
rm

iss
ion

s
fon

t

web
RTC

au
dio

 da
ta
can

va
s

na
v.a

pp
Vers

ion

web
GL p

ara
ms

na
v p

rop
ert

ies

na
v.b

uild
ID

wind
ow

 pr
op

ert
ies

na
v.u

ser
Age

nt

Attribute

1
5

10
15
20

30

40

50

60

70

Nu
m

be
r o

f c
ha

ng
es

Browser
Firefox
Chrome

4.3 Fingerprints evolution through browser versions 93

We continue our observations by measuring the attributes changing the most among
the browser versions. The results are presented in Figure 4.2. The most changing ones are
the navigator.userAgent for both browsers and navigator.appVersion for Chrome
as they are version-related. The buildID attribute was also version-related on Firefox,
but is now statically defined, and we do not expect any further changes on this attribute.
While these attributes update often, their values are highly predictable and can easily
be managed on a browser fingerprints linking algorithm. We also observed that the
navigator and window property lists are changing quite often. As we explained earlier,
this is because these 2 objects carry the available properties and APIs of the browsers,
which are constantly subject to changes. The rest of the attributes we studied either
rarely change or are never modified. These results show how often we can expect changes
on attributes and how we can rely on stable attributes to build our browser fingerprints
linking algorithm.

4.3.2 Nightly/beta versions

Besides our experiments on the evolution among browser release versions, we also ran
nightly and beta versions to better understand when the changes appear in the browser,
and to study the possibility to anticipate them. We ran all nightly and beta versions on
Firefox between release versions 74.0 to 83.0 and all beta versions of Chrome between
release versions 80 and 90. The nightly build is a Firefox pre-release version packaged
twice a day for testing purposes. The beta version of both Firefox and Chrome are
pre-release versions that aim at providing a stable base for future releases. Generally, only
bug fixes are allowed on beta versions. On both Chrome and Firefox, we observed 2
categories of changes:

• Changes observed on a given release version can often be seen from the very first
corresponding beta version. For example, the error message given by Firefox
when querying for a non-supported permission changed on release version 75. The
first beta version corresponding to this release already included this change;

• The other changes are not directly included on the incoming release version but
on a near-future release version. For example, we first observed the window
properties originAgentCluster and NavigatorUAData on Chrome beta version
88.0.4324.27, but they were only included on the release version 90.

We made 2 observations from these results: i) Changes can be observed before release
versions, when they are engineering contributions that need to be tested and eventually
shipped to a fraction of the users before being widely deployed. Similarly to our other
results, it shows browser fingerprinting is an engineering side-effect; ii) Weeks or even
months can pass between a change made on a nightly or beta version and its appearance
in a release version. Browser fingerprints linking algorithm developers could easily manage

94
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

nightly and beta versions to observe future incoming changes on release versions and
adapt their algorithm for their users.

4.3.3 Categorizing attributes
Based on our results, we classified the stability property of browser fingerprinting
attributes into 3 categories:

• We re-used our results in Section 4.2 to measure the attributes identifying the user
configuration, namely the screen sizes, permissions, navigator.doNotTrack,
timezone and navigator.language(s). By essence, these attributes are very
unstable: they can change anytime and it is impossible to anticipate their values.
We defined these attributes as volatile;

• We observed that the nav.userAgent, nav.appVersion, navigator properties
and window properties attributes change very often, especially over the last
release versions of the studied browsers. We defined these attributes as evolving;

• We showed that the remaining of the browser fingerprinting attributes never or
rarely change during browser updates. We define these attributes as stable.

Finally, we defined C(a) as the function to retrieve the category of an attribute. Table 4.5
also presents the category of each of our attributes.

Synthesis. In this section, we answered RQ4 by measuring the evolution of browser
fingerprints through browser versions. We showed attributes value changes are engineering
side-effects and concern only a small proportion of attributes, meaning a large number of
attributes are stable. We also demonstrated browser nightly and beta versions can be
used to predict and anticipate future changes in browser release versions.

4.4 A browser fingerprints linking algorithm
As we explained in Section 2.7, existing techniques to link browser fingerprints are not
satisfying for web authentication. In this section, we build on our previous results on the
causes of fingerprint diversity and evolutions among browser versions to design a tailored
linking algorithm.

4.4.1 Main goal
In an authentication system, browser fingerprinting acts as an additional layer of protec-
tion where the system verifies that the device being used for the authentication attempt
has been seen before. In this context, the goal of a linking algorithm is to match the
fingerprint submitted on the authentication form with one on the fingerprints already
registered by the user in a previous session. If the new fingerprint is close enough to a

4.4 A browser fingerprints linking algorithm 95

Algorithm 1 Fingerprints linking algorithm
1: function Link(submittedFP, registeredFPs, threshold, W)
2: scores← ⟨⟩
3: for each registeredFP ∈ registeredFPs do
4: score← 0
5: totalWeight← 0
6: attrNames← GetAttrs(submittedFP)
7: for each attrName ∈ attrNames do
8: submittedAttrV alue← GetValue(attrName, submittedFP)
9: registeredAttrV alue← GetValue(attrName, registeredFP)

10: scoreAttr ← ComputeScore(submittedAttrV alue, registeredAttrV alue)
11: attrWeight←W(attrName)
12: score← score + scoreAttr ∗ attrWeight
13: totalWeight← totalWeight + attrWeight
14: end for
15: score← score/totalWeight
16: scores← scores ∪ ⟨registeredFP, score⟩
17: end for
18: registeredFP, maxScore←Max(scores)
19: if maxScore >= threshold then
20: return registeredFP
21: else
22: return false
23: end if
24: end function

previous one with changes that are in an acceptable envelope, the identity check will
pass and the user will be granted access. Otherwise, the check will lead to a failure.

An authentication system has strong constraints on the execution speed. The linking
algorithm must provide an answer in few milliseconds not to block or slow down the
authentication attempt. As the machine-learning algorithms proposed in the state of the
art scale badly, we believe a rule-based algorithm is more adapted to this use case. The
general idea is to get a similarity score between the submitted fingerprint and each of
the registered ones, keeping the highest. If the score is higher than a defined threshold,
the user is then authenticated.

4.4.2 Design
We present our algorithm in Algorithm 1. It takes 4 different inputs:
• The submitted fingerprint is the fingerprint of the current authentication attempt

that has just been collected,
• The registered fingerprints are the fingerprints already stored. The algorithm will

try to link the submitted fingerprint to one of the registered fingerprints,
• The threshold is the minimum score to reach to validate the link between the

submitted fingerprint and one of the registered fingerprints,

96
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

• The weight computing function, named W , which—given an attribute—returns its
weight corresponding to the global importance of the attribute when computing
the score.

We first take each registered fingerprint (line 3). For each attribute (line 7), the
score computing function (line 10) computes a score reflecting the similarity between
the attribute value of the submitted fingerprint and the attribute value of the registered
fingerprint. The algorithm collects the weight of this attribute (line 11). Given this
information, it computes a weighted average of the scores of all the attributes (line
12− 15). The algorithm stores all the similarity scores, keeps the highest one (line 18),
and checks if it is higher than the threshold (line 19− 23).

In our algorithm, the score computing function computes a score between 0 and 1,
reflecting the similarity between the 2 attribute values. 0 means the values have nothing
in common, while 1 means the values are identical. We used different score computing
function according to the type of the attribute value. i) For primitives type values—string
and number values, the function is a simple equality test that returns 0 if the values are
different and 1 if the values are equal, ii) We used the Jaccard index to compute the
score for arrays attributes, namely navigator.languages, navigator properties and
window properties), iii) For attributes having key-values tuples—audio parameters,
audio and video formats, fonts, mediaDevices, permissions, webGLParameters,
navigator.mimeTypes and plugins, we computed the Jaccard index on the tuples.

4.4.3 Parameters
The first parameter, the submitted fingerprint, is naturally obtained by the system. The
3 others can be customized to optimize the algorithm.

Registered fingerprints The registered fingerprints represent the fingerprints that
are trusted as belonging to the user. With one of them, the user can authenticate.

Weights. Each attribute has its own properties. Previously, we studied the causes of the
diversity of our attributes among our controlled environment and the causes of the stability
among browser version updates. In our algorithm, the weight of an attribute, noted W (a)
represents its global uniqueness and stability. The more unique and stable an attribute
value is, the higher its weight will be. Considering the uniqueness of an attribute,
noted Wu(a), we use our results when measuring the number of layers an attribute
identifies and our functions L(a), Ld(a) and Lm(a) defined in Section 4.2.3. Concerning
the stability, we use our attributes stability classification made in Section 4.3.3. For
each category, we define a weight that represents the stability of the attributes in the
category c, noted Ws(c). Thus, the stability weight of an attribute can be obtained with
Ws(C(a)), where C(a) is the function we defined in Section 4.3.3 that, given an attribute,

4.5 Evaluation of the linking algorithm 97

returns its category. As volatile attributes are less stable than evolving attributes,
themselves being less stable than stable attributes, we set the following constraint:
Ws(volatile) < Ws(evolving) < Ws(stable). The weight of an attribute is the product of
the uniqueness weight and the stability weight, noted W (a) = Wu(a) ∗Ws(C(a)).

Threshold. It represents the tolerance of the algorithm. A low threshold allows more
differences between fingerprints, which increases the chances for a user to authenticate
after her fingerprint changes. However, it reduces the difficulty for an attacker to mimic
a fingerprint, and be mistakenly allowed to authenticate. Oppositely, a high threshold
reduces the risk for an attacker to authenticate, but also the chances for a user to do so.

Synthesis. In this section, we used our knowledge on the causes of browser fingerprint
diversity and evolution to design a rule-based browser fingerprint linking algorithm. We
leveraged the attributes properties concerning stability and uniqueness to define weights
that represent the importance of each attribute in the linking algorithm.

4.5 Evaluation of the linking algorithm

4.5.1 Datasets
We used the data collected by the AmIUnique web extension, whose goal is to collect
and study fingerprints for research purposes. The extension is available on both Chrome
and Firefox. During the installation, the extension generates a browser instance unique
identifier. Every 4 hours, the extension collects the browser fingerprint of the device and
sends it to a server with the extension instance identifier. The identifier is used to link
all the fingerprints coming from the same instance browser and will be used as a ground
truth when evaluating our algorithm. From August 2020 to March 2021, we collected
952, 828 fingerprints from 64, 235 extension instances.

4.5.2 Key performance metrics
We ran our algorithm in 2 modes: a safe mode and an attack mode.

Safe mode. First, we considered a safe mode, where the only user that tries to
authenticate is the rightful one. Then, the registered fingerprints are hers, and the
challenge is to correctly link all the fingerprints coming from a single browser instance.

For this mode, we used several terms and metrics proposed by the state-of-the-art
linking algorithm, which is FP-Stalker [150]. We renamed the term tracking chain
as identification chain, which still corresponds to a list of fingerprints that have been
linked together. Each identification chain is assigned an ID. In the case of a perfect

98
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

linking algorithm, each browser instance would have a unique chain, composed of all
the fingerprints coming from that instance. The identification duration (named tracking
duration in the FP-Stalker study) represents the period during which the linking
algorithm correctly links the fingerprint to the correct identification chain. The average
identification duration corresponds to the average identification duration of all the browser
instances. The number of assigned IDs corresponds to the number of different identifiers
assigned to a browser instance, which corresponds to the number of identification chain
belonging to a browser instance. With a perfect linking algorithm, each browser instance
should only be assigned one identifier. Then, we tried maximizing the identification
duration and minimizing the number of assigned IDs. In this context, the list of registered
fingerprints is formed by taking the last fingerprint of each identification chain. Our
algorithm is used as follows. First, we sort the fingerprints F of the browser instance by
increasing timestamps, and create one identification chain composed of one fingerprint,
the very first fingerprint sent by the browser instance. Then, for each fingerprint f of F :

• We run our algorithm with f as the submitted fingerprint, our registered fingerprints
list as being the list formed by collecting the last fingerprint of each identification
chain, our weight sets and threshold (see below for parameters settings),

• If the algorithm links the fingerprint to one of the registered one, the fingerprint is
added to the corresponding identification chain, at the end,

• If the algorithm does not link our fingerprint to any of the registered one, we create
a new identification chain with one fingerprint, the submitted one.

Attack mode. Our second mode considers the possibility for an attacker to mimic a
fingerprint and submit it to authenticate. While our algorithm only takes as input the
registered fingerprints for the user trying to authenticate, we also aim at measuring the
behavior of our algorithm when provided fingerprints that do not belong to the same
browser instance. In this context, we are interested in measuring whether our algorithm
links two fingerprints coming from different browser instances.

We ran our algorithm with: i) the submitted fingerprint being each fingerprint of our
dataset, ii) the registered fingerprints as an array of one element containing each fingerprint
of our dataset which does not belong to the same browser instance. This operation
will compute the equivalent of a Cartesian product, which will be time-consuming. We
reduce the size of our dataset by splitting our dataset in days and by only using the data
collected on the first day of each month. Here, our metric will be the proportion of True
Negative (TN) and False Positive (FP). A False Positive is dangerous because it links a
fingerprint to an instance it does not belong to. In the case of a perfect algorithm, the
TN should represent 100% of the results, and the FP should represent 0% of the results.
Thus, we aimed at finding the best set of parameters that minimizes the proportion of
False Positives.

4.5 Evaluation of the linking algorithm 99

Table 4.6: Set of weights to be evaluated, and corresponding weights for the canvas
attribute

Ws(c) Category weight value
Wu(a) W (a) Canvas weight (stable cat.)

Ws(volatile) Ws(evolving) Ws(stable) Ws(c) Wu(a) W (a)
Ws1(c) 1 1 1 1 W1 1 1 1
Ws2(c) 1 2 3 Ld(a) W2 3 3 9
Ws3(c) 1 2 4 Ld(a) W3 4 3 12
Ws4(c) 1 3 6 Ld(a) W4 6 3 18
Ws5(c) 1 3 9 Ld(a) W5 9 3 27

Figure 4.3: Browser instances identification duration according to the threshold and
weights sets

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0

50

100

150

200

Id
en

tif
ica

tio
n

du
ra

tio
n

(in
 d

ay
s) Weight Set

W1
W2
W3
W4
W5

4.5.3 Parameters values

As we mentioned in Section 4.4.3, the weight of an attribute is defined by its uniqueness
weight multiplied by its stability weight. As our dataset is only made of desktop devices,
we defined the uniqueness weight of an attribute Wu(a) as being equal to Ld(a), which we
defined in Section 4.2.3 and corresponds to the number of layers an attribute identifies on
a desktop browser. Concerning the stability weight, we followed our constraint concerning
the categories weight defined earlier (Ws(volatile) < Ws(evolving) < Ws(stable)) and
tried various ratio between the category weights to evaluate. Table 4.6 summarizes our
weights and values to be evaluated, and provides an example of the different weights
for the canvas attribute. Concerning our threshold, we will evaluate our metrics when
progressively increasing its value from 0.5 to 1.

100
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

4.5.4 In-the-wild results

4.5.4.1 Safe mode results

We first evaluate the linking capability of our algorithm by running our algorithm in
the safe mode previously defined. To evaluate our algorithm in this mode, we cleaned
our dataset by keeping only browser instances that send browser fingerprints during the
entire duration of our data collection. More precisely, we will only consider the browser
instances that send i) a fingerprint during the first week of collection, and ii) another
fingerprint during the last week of collection. This simplifies the analysis of our results as
the longest identification duration is approximately the same for all the browser instances:
210 days. With this configuration, we evaluated 427, 702 fingerprints belonging to 748
browser instances. The average identification duration for each of our weight sets and
threshold values are presented on Figure 4.3. The colors strip represents a confidence
interval of 0.95. Our average identification duration remains at more 200 days for all
our weight sets while the threshold is below 0.62. From this point, weight sets behave
differently. The weight sets W2 to W5 are quite similar and provides an identification
duration of 150 to 190 days for a threshold of 0.7, 145 days for 0.8 and 40 to 50 days
for 0.9. These weight sets loose all identification power when the threshold is above
0.9. Oppositely, the weight set W1 can link browser instances for longer periods when
the threshold is similar. This might be an unexpected result because we defined our
weights according to the stability of attributes. In our stability weight definition, stable
attributes have a higher stability weight than evolving attributes, themselves having
a higher stability weight than volatile attributes. In fact, volatile attributes concern
attributes that identity the configuration or the context of the user. If the user does not
change her configuration, these attributes will not change. When designing our weights,
we assumed these attributes could change anytime, because we cannot understand the
behaviours behind a configuration change. While we do not observe such behaviours in
this dataset, we still believe it can happen anytime. Thus, we prefer anticipating the
worst scenario and use a weight set that is still able to link fingerprints after configuration
or devices changes.

Our second metric for the safe mode is the number of assigned IDs. It represents the
number of chains on which fingerprints coming from the browser instance have been put.
These results are presented on Figure 4.4. It also shows weight sets W2 to W5 behaves
similarly, and put fingerprints coming from the same instance in around 5 different chain
for a threshold of 0.9. It means for the duration of our experiment, which is 210 days, 5
chains were required per browser instance. A threshold higher than 0.9 does not seem
relevant as the number of assigned IDs grows exponentially. Similarly to what has been
observed on the identification duration, the weight set W1 requires a lower number of
assigned IDs for the same threshold.

4.5 Evaluation of the linking algorithm 101

Figure 4.4: Number of assigned IDs to each browser instance according to the threshold
and weights sets

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

1
2
5

10
20
50

100
200
500

1000

Nu
m

be
r o

f a
ss

ig
ne

d
ID

s Weight Set
W1
W2
W3
W4
W5

4.5.4.2 Attack mode results

Our second evaluation focuses on measuring the distances between the fingerprints of our
dataset, and understanding if fingerprints coming from different instances are linked by
our algorithm. We computed the number of True Negative (TN) and False Positive (FP)
over more than 18 billion comparisons. Our results are presented on Figure 4.5. We first
observe the weights set W1 globally links more fingerprints coming from different browser
instances than other weight sets with identical threshold values. This is an undesired
behavior as an attacker has a higher probability to be linked when trying to authenticate
on the user’s account. Additionally, if an attacker is not directly linked to a registered
fingerprint of the user, it shows he has less effort to do to mimic the fingerprint of the
user he attacks. Because the weight set W1 defines a constant weight of 1 for all the
attributes, it highlights the need to setup different weights for attributes having different
properties. The other weights sets we evaluated behaves better and provides similar
results. With this dataset, a threshold of 0.85 to 0.88 would limit the possibility for an
attacker to be linked to a registered fingerprint.

Synthesis. In this section, we answer RQ5 by evaluating our linking algorithm defined
previously on a dataset of 952, 828 fingerprints collected on 64, 235 different browser
instances. We evaluated our algorithm in 2 modes: a safe mode to measure the ability of
our algorithm to correctly link the browser fingerprints coming from the same instances,
and an attack mode where we estimated the probability for 2 fingerprints coming from
different instances to be linked. We demonstrate our algorithm is reliable and relevant at
linking fingerprints when provided fingerprints collected on in-the-wild browser instances.

102
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

Figure 4.5: Evolution of the proportion of True Negative (TN) and False Positive (FP)
when evaluating our algorithm in attack mode.

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0

20

40

60

80

100

Pr
op

or
tio

n
(%

)

Weight Set
W1
W2
W3
W4
W5

Result Type
TN
FP

4.6 Discussion

4.6.1 Ethical consideration
We collected our data in the wild with the AmIUnique extensions between August 2020
and March 2021. Before installing the extension, we clearly informed users about its
goal and the data collected on the installation page. The collected fingerprints are only
linked to a random identifier generated during the extension installation. Contributing
participants can access or delete all their data at any time by submitting their extension
ID. Finally, the extension and the handling of collected data conform to the IRB
recommendations we received.

4.6.2 Choosing parameters value
As our evaluation shows, the parameters have a direct impact on the results when
evaluating our algorithm on both safe and attack modes. The weights set W1 appears to
be unusable in real life because of his tendency to link fingerprints coming from different
browser instances. On our dataset, other weight sets behave similarly. Concerning
the threshold, the safe mode results encourage to lower the threshold to increase the
identification duration while the attack mode results encourage to rise up the threshold to
limit the risk for an attacker to be able to be linked to a registered fingerprint. According
to our observations, we believe a threshold of 0.8 to 0.85 is interesting for our dataset
because it provides an identification period of more than 100 days while having an
extremely reduced proportion of false positives (FP): 0 ∼ 2%.

These results need to be confirmed and/or adapted for other datasets. As already
highlighted by several studies [96, 117, 103], different fingerprints datasets have different

4.7 Conclusion 103

properties, which could impact the parameters choice and the reliability of our algorithm.
When possible, we advise users of our algorithm to evaluate it on their dataset and adapt
the parameters accordingly.

4.6.3 Linking algorithm improvements.
As Li et al. [119] suggested, we took advantage of our controlled environment to improve
the knowledge about the semantic of browser fingerprints. It allowed us to build relevant
rules and set reliable weights. Our algorithm could still be improved on several points.

First, we did not took into consideration real-event timing, such as the major browsers
release calendars or the switch to summer/winter time. While we agree on the interest of
leveraging these information, these real-event could not occur on the same day or week
for all the users. Thus, admins should have a great knowledge of their user and device
bases before adding verifications based on these events.

Second, we observed that several changes are correlated and happen in the same
browser update. On Chrome, the appVersion and User-Agent are linked to the current
browser version. However, we did not use this information to ensure the changes were
consistent with one another. Thus, it is possible to add stronger verification requirements
where the values in such attributes should be updated at the same time. This would
improve our algorithm by increasing the linkability between fingerprints.

4.7 Conclusion
In this chapter, we collected browser fingerprints inside a controlled environment. We
studied the state-of-the-art attributes, as well as new ones and observed the possible
values among a set of desktop and mobile devices. We answered RQ3 about the cause
of fingerprints diversity by demonstrating several hardware and software components—
hardware, OS, browser configuration—are responsible for this diversity, on both desktop
and mobile devices. Concerning the impact of a browser update on the fingerprint,
questioned in RQ4, we provided a better understanding of the evolution of browser
fingerprints from one browser version to the next, and show many attributes does
not change or evolve towards a predictable value. We increased our knowledge on
the semantics of browser fingerprints and showed that browser fingerprinting is an
engineering side-effect caused by differences in hardware capabilities, API support and
implementation, and even license issues. We observed few attributes concentrating the
majority of the changes, meaning that many attributes are kept stable across dozens of
browser versions. We leveraged this knowledge to design a browser fingerprints linking
algorithm whose goal is to determine if a fingerprint is close enough to a set of registered
fingerprints for web authentication. The design of this algorithm answers RQ5. We

104
FP-Controlink: Studying fingerprinting under a controlled environment to link

fingerprints

implemented and evaluated our algorithm on a dataset collected with a browser extension.
We evaluated our algorithm on a dataset of 952, 828 fingerprints collected from 64, 235
browser instances. Our results showed that our algorithm is able to link fingerprints
coming from the same browser instance with high precision and speed. Finally, we also
evaluate our algorithm when provided fingerprints coming from different instances, and
demonstrate its reliability in this type of attack.

Chapter 5

Advanced risk-based authentication
using browser fingerprinting

We explained in Section 2.2.2 the different threats and attack models that target au-
thentication systems. As we mentioned in Section 2.2.5.2, additional authentication
factors in a multi-factor authentication system impact the user experience. Among
the websites we observed that have adopted authentication factors to strengthen web
authentication in Chapter 3, we were often requested to type a One Time Password
(OTP), received via email or SMS to prove our identity. These techniques have a strong
impact on the user experience because the user is required to perform several actions
to authenticate, such as getting her phone or opening her email and retyping the code
within the allotted time. We also observed browser fingerprinting was barely used to
protect websites against attacks. As explained in Section 3.5, we believe this is because:
i) no technique existed to properly link browser fingerprints in a web authentication
context, and ii) browser fingerprinting is perceived as a weak proof of identity that can
easily be spoofed. Concerning fingerprint linking, Chapter 4 aims at providing a browser
fingerprint linking algorithm for web authentication. We evaluated our algorithm and
observed it properly links fingerprints with a low risk of linking fingerprints from different
browser instances. Concerning fingerprint spoofing, we observe several browser finger-
printing attributes are already used by real-life systems for Risk-Based Authentication
(RBA), such as the HTTP headers [154], as explained in Section 2.2.5.3. In their study,
Wiefling et al. [154] highlighted the positive perception of users concerning RBA schemes
that only require an additional proof of identity when the device and/or the location has
changed or is otherwise unknown to the authentication service. Browser fingerprinting is
in itself a technique to identify devices. And while we agree on some of the limitations of
this technique in regards to attribute spoofing, it is much more complicated to spoof a
complete fingerprint than just the HTTP headers as used in some real-life authentication
schemes. We believe it can be used as an additional and complementary technique

106 Advanced risk-based authentication using browser fingerprinting

to verify the user’s identity. Regarding the balance of security versus user experience
discussed in Section 2.2.5, we believe fingerprinting can strengthen an authentication
scheme in interesting ways while having a negligible impact on the user experience, which
ultimately will result in a higher level of acceptance from users and improved security.

According to these observations and the current state of the art, we believe browser
fingerprinting can be used as a feature in a risk-based authentication scheme to strengthen
authentication. This chapter aims at exploring the possibilities. In Section 5.1, we
complete existing work presented in Section 2.6.3 by designing an authentication scheme
that uses browser fingerprinting and explores the challenges it entails concerning security
and usability. In Section 5.2, we implement our scheme in the main authentication
system at Inria, which is a Single-Sign On service (SSO). We explain how challenges
are addressed according to the specifications of the existing SSO and the constraints
given by Inria’s Chief Information Officer (CIO) and the IT management department.
In Section 5.3, we evaluate our scheme and its implementation on a dataset of 82 users
and 250 fingerprints. Our results show the scheme is reliable to improve web security
while having a limited impact on the user experience. We discuss our results and the
possibilities to improve the scheme in Section 5.4 and conclude in Section 5.5.

5.1 Authentication scheme

5.1.1 Design

We detailed in Section 2.2.2 the different attack models that target authentication systems,
such as phishing or stolen credentials. Several techniques presented in Section 2.2.5
exist to strengthen web authentication. Among them, Risk-Based Authentication (RBA)
collects information about the authentication context of the user to provide a risk level
about the authentication attempt. This information—such as the IP address or the
HTTP headers—are named features and can be collected without the user noticing. As
stated by Preuveneers et al. [130], browser fingerprinting can be used as a feature in
an RBA system. We explained in Section 2.2.5.3 that several features already used to
compute a risk level are in fact included in a browser fingerprint, such as the HTTP
headers or the screen resolution. In this section, we define browser fingerprinting as
an advanced feature for a Risk-Based Authentication (RBA) scheme. First, it can be
used in an immediate mode where the fingerprint is collected on the authentication page
and checked simultaneously with the username and password. In this context, it would
counter attacks based on stolen credentials, such as phishing. The fingerprint can also be
checked in a delayed mode. After the authentication is completed, each request sent to
the server can include the fingerprint to check whether the session cookies are associated
with the same fingerprint. Our intuition being that if the fingerprint changes mid-session,

5.1 Authentication scheme 107

it might reveal that an attacker has stolen the user session. Used this way, it would
increase the security against the session hijacking attack described in Section 2.2.2.

As mentioned in Section 2.2.1, the lifespan of an authentication factor or a feature for
RBA has 3 main steps, enrollment, verification and recovery/revocation.

Enrollment. We explained in Section 3.4 and Section 4.4 that a device fingerprint
needs to be registered and associated with a user before being used for verification. We
define a registered device as a device having at least one of its fingerprints registered. In
Wiefling’s study [155], it is unclear how the features for RBA are registered. We believe
the original values for the features are stored during account creation step. As discussed
in Section 4.6, a second option would be to use a secure way to register a feature, such as
a MFA mechanism (an SMS or email OTP), as mentioned by Quermann et al. [131]. We
believe both these techniques are suitable to associate a browser fingerprint to a user.

Verification. During an authentication attempt, the system collects the fingerprint
of the user, named submitted fingerprint, and compares it to a list of registered fingerprints
for this account. The list of registered fingerprints is obtained by taking the last fingerprint
associated to each registered device. The fingerprint comparison outputs a risk level
RLF . If the submitted fingerprint is equal or close enough to a registered fingerprint,
the risk level RLF for this feature is considered low. Otherwise, the risk level RLF is
considered high. In this case, the server can take several actions, such as: i) denying
the authentication attempt, ii) using a fallback technique (e.g., MFA SMS or Email
verification), iii) allowing the user to authenticate but in read-only mode, and prevent
any action that modifies the account.

Recovery/Revocation. The user cannot loose their browser fingerprint, as it is
an inherent part of their browser. Thus, the recovery step is not necessary when using
browser fingerprinting as an RBA feature. However, users must be able to revoke
fingerprints belonging to a device they no longer have access to. For example, a user
might change their computer or smartphone, or have one of their devices stolen.

Using browser fingerprinting to identify the device on which the user tries to authen-
ticate is similar to the RBA-device explained by Wiefling et al. [154], with the exception
they seem to have the device’s ground truth values.

5.1.2 Challenges
Several works have studied the challenges of proposing an RBA scheme being reliable
and relevant. As mentioned by Preuveneers [130], the browser fingerprinting feature
must fulfill several Security Requirements (SR):

• SR1 . Fingerprints cannot be compromised.
• SR2 . Prevent fingerprint replay attacks.
• SR3 . Support fingerprint revocation.

108 Advanced risk-based authentication using browser fingerprinting

• SR4 . Fingerprints should have strong similarity checks.
Additionally, Alaca et al. [87] presented several Properties (P) an authentication

scheme using browser fingerprinting might have:
• P1 . Each device has a unique fingerprint that can be associated with a user’s

account.
• P2 . Fingerprints obtained via the same browser instance are either identical or

linkable.
• P3 . It is difficult for an attacker to spoof a device.
These studies did not mention the need to reduce the impact on the user experience.

If the authentication scheme has a strong impact on the user experience, it will frustrate
users and prevent them from adopting the scheme. Concretely, we define the following
User Experience (UE) concerns that should be addressed:

• UE1. First, the time taken by the browser fingerprinting script to collect the
fingerprint should not be higher than the time required by users to enter their
credentials. In the case of auto-filled forms through, for example, the use of
password managers, the collection time should be really short—a few hundred of
milliseconds.

• UE2. Second, the time taken by the system to compare the submitted fingerprint to
the registered ones will be part of the total time taken by the system to authenticate
the user. Thus, the time taken by the system to compare the submitted fingerprint
to the registered ones should be short because it will increase the total time taken
by the system to authenticate the user.

• UE3. Finally, the number of actions required to add or remove a fingerprint to a
user’s account should be low to facilitate the acceptance of the scheme by the users.

By addressing the SR and P from the state-of-the-art, and the UE concerns we
propose, we argue browser fingerprinting can strengthen web authentication while having
a negligible impact on the user experience. More specifically, we formulate the following
challenges an authentication scheme using browser fingerprinting should try to rise up
to be reliable and relevant:

Challenge n°1: Spoofing the fingerprint of a user should be hard for an attacker.
Challenge n°2: The authentication scheme should support the registration of devices

with a user-friendly mechanism.
Challenge n°3: Fingerprints from the same browser instance should be linked

together by the authentication scheme.
Challenge n°4: The authentication scheme should support the revocation of finger-

prints.
Challenge n°5: The authentication scheme should minimize the impact to the user

experience.

5.2 Implementation 109

5.2 Implementation

5.2.1 Legacy Authentication Systems

Figure 5.1: Description of the interactions when authenticating on an SSO system.

App 1

App 2

1) browse
to

2) redirect
 to CAS

3) show
form

4) submit
credentials

5) auth.
user

6) validate
session 8) redirect

 to CAS

7) browse
to

9) check
session

10) redirect
 to App 2

11) validate
session

Inria is a French research institute that has 9 research centers across France. The
main authentication system Inria uses is the Central Authentication Service (CAS).
CAS is a Single Single-On (SSO) system that provides a unique authentication point for
users to access most of Inria’s applications, as explained in Section 2.2.1.

Figure 5.1 presents the interactions between the user’s browser, the applications
she attempts to access and the SSO authentication system. When a user accesses an
application behind the SSO system for the first time (1), the application redirects the
user to the SSO (2), which provides the authentication page to the user (3). The user
submits her credentials (4), the system validates (or denies) the authentication attempt
(5), and redirects the user to the service she originally accessed with a session identifier.
The service queries the SSO system to validate the user session identifier (6). Finally,
the service creates the session and the user can now browse the service. When the same
user browses a second application behind the same SSO system (7), this application
also redirects the user to the SSO system (8). The SSO checks the user session, sees
she is already authenticated (9), and redirects the user to the application with a session
identifier (10). The service validates the user session identifier with the SSO system
(11) and creates a new session. For this second service, the user is not prompted with a
form, she is authenticated via a double redirection mechanism plus a session check that
are almost unnoticeable. More generally, a user can usually notice only a fraction of

110 Advanced risk-based authentication using browser fingerprinting

the interactions happening in this kind of system, those which occur between the user
and the browser. Several session states are kept by the applications to maintain the
authenticated state of the user. For a user that browses n services, she will have n+1
sessions:

• n session for the n application she browses. These sessions are initialized by an
exchange between the application and the SSO system and allow the applications
to maintain an active session without querying the SSO system each time they
receive a request from the user.

• One session maintained by the SSO system. It prevents the SSO system to present
the user an authentication page with a form each time an application asks for
session verification.

We aimed at improving the immediate authentication scheme when the user enters
her credentials on the form. Before our additions, the authentication system of Inria
worked exactly the way described above. The authentication scheme only used the
password as an authentication factor and did not include any additional factor or feature
for Risk-Based Authentication (RBA).

By integrating our solution in the existing system, we added a fingerprint collection
script on the authentication form and a fingerprint verification step during the authenti-
cation attempt process on the server. The next section will precise these changes and
present the resulting scheme.

5.2.2 Rising to the challenges

In this section, we explain how the challenges defined in Section 5.1.2 are addressed in
our implementation.

5.2.2.1 Spoofing should be hard for an attacker

Challenge n°1 concerns the collection of the fingerprint. It should be difficult for
an attacker to collect the fingerprint of the targeted user as it can be used to spoof
the user’s fingerprint and gain access to the account. The common attributes used to
build a fingerprint can be collected by an attacker through JavaScript APIs as soon
as the visitor executes a script on a page under his control. This is the case of the
phishing attack, presented in Section 2.2.2. If an attacker is aware of the use of browser
fingerprinting to strengthen web authentication, he could update his attack by collecting
the fingerprint of the users that visit the phishing page. When the attacker tries to
authenticate on the legitimate authentication page with the credentials he stole, he could
replay the collected fingerprint to make it look like the legitimate one. With this new

5.2 Implementation 111

Figure 5.2: Description of the changes required on an SSO when adding a dynamic canvas
check step.

1) browse
to

2) show 1st
page w. form

3) submit credentials

4) check
credentials

5) show 2nd page
w. drawing
primitives

6) generate and send
canvas

7) check 1st canvas
and store 2nd

8) auth
user

Auth.
system

attack model, an attacker could bypass the additional security layer provided by browser
fingerprinting.

We explained in Section 2.3.3.2 the canvas attribute generates an output whose value
depends on the drawing primitives used. As studied in Chapter 4, due to the differences in
the hardware and software components between devices, devices that are given the same
set of drawing primitives might generate different values. In Section 2.6.3, we described
a technique proposed by Laperdrix et al. [116] that leverages this unpredictability to
generate a pair of dynamic fingerprints. By chaining dynamic fingerprints, it is possible
to build a trusted fingerprinting chain that cannot be replayed by an attacker. In this
case, the first dynamic fingerprint is used to verify the user’s identity, while the second
fingerprint is stored for the next authentication. While an attacker learning the set of
primitives used for a given user could not directly know the canvas generated by the
user’s device as it might have different hardware and software components, the attacker
could generate canvas on a pool of devices he owns to try generate the same canvas as the
user’s device would. In this context, the secret information that must be protected from
an attacker is not only the value of the canvas, but also the randomly generated drawing
instructions. Because they are part of the secret information, the drawing instructions
should be protected and cannot be provided to the user without receiving a first proof of
identity.

Figure 5.2 presents how such an authentication would work. Steps in blue are new
steps compared to an existing scheme and would require to be added. When a user wants
to authenticate (1), the server provides the user a first HTML page with a login form
(2). The user enters her username and password and sends them to the authentication
server (3). If the given password matches (4), the server sends back the user on a second
HTML page with the pair of drawing primitive sets to collect the canvas rendering data
(5). The second page computes two canvas renderings on the user’s device, each with a

112 Advanced risk-based authentication using browser fingerprinting

different set of drawing instructions, and returns the result to the server (6). The first
set of drawing instructions corresponds to an image the server previously asked for from
the device, and the second set is a new, random, unique set of instructions. The server
compares the image from the first drawing primitives set to the one stored during the
previous authentication attempt. If it matches, the second set of drawing primitives is
stored to check the next authentication attempt (7), and the user gains access (8).

This authentication scheme with unpredictable canvas values would have the same
challenges as an authentication scheme with static browser fingerprints. Additionally,
the drawing primitives are a secret information and are specific to a user. Then, a first
proof of identity needs to be checked before sending the drawing primitives to the user.
Otherwise, the set of primitives used for this user can be learned by the attacker, which
leads to a partial loss of interest for this technique compared to using the same set of
primitives for all the users. Then, it implies having 2 HTML pages provided to the
user at different moments of the authentication flow to complete the data collection
without compromising her security. The current protocol authentication system on which
we will integrate our solution only provides one HTML form to the user, which is the
one collecting the username and the password. Presenting a second HTML page to the
user, even without a form, would change the entire authentication flow and split the
factors/features checks. The system should be sure the user is following the complete
flow from the beginning to the end to avoid attackers that could manage to shortcut
some parts of the flow and gain access to the account. It would require major changes
on any authentication scheme, and especially on the CAS one. Thus, we decided to let
the implementation and evaluation of the Challenge n°1 for future work, and to use the
usual static attributes adopted for browser fingerprinting. More precisely, we collected
the navigator, screen and window properties, font enumeration, canvas and WebGL
rendering, WebGL properties and WebRTC data to form a fingerprint, as explained in
Section 2.3.3.

5.2.2.2 The authentication scheme should support the registration of a new
device

As mentioned in our Challenge n°2, the system needs to provide users a way to
register devices to perform comparisons between the submitted fingerprint and registered
fingerprints coming from registered devices. We explained in Section 4.6 that several
techniques can be used to register a device, such as an SMS or email OTP. As the email
service of Inria is itself behind the CAS system, it cannot be used to register a device.
The usage of an SMS OTP would either require 1. employees to use their personal mobile
devices, which has been excluded for privacy reasons, or 2. Inria to provide professional
mobiles to its employees, which has been excluded for cost reasons. The use of hardware
token has also been excluded for similar reasons. Additionally, accounts are automatically

5.2 Implementation 113

created and we cannot rely on the account creation process to register a first device to
the account.

Instead, we decided to rely on IP networks for our registration. As explained in
Section 2.2.5.3, IP networks are a feature for Risk-Based Authentication (RBA). Thus,
rather than using an authentication factor to register devices, we used an RBA feature.
We name the risk-level of this feature RLN . We define a trusted network as a network
providing trusted IP addresses. All other networks are non-trusted networks and do not
provide trusted IP addresses. A user with a trusted IP address will have the fingerprint of
her device automatically registered, leading to a registered device. In our implementation,
trusted networks are Wifi and wired networks setup by Inria and available in each
research center, plus the VPN network that allows remote connections. The research
center’s networks require a password to authenticate, plus the geographical constraint of
being physically present at one of the research buildings (or very close to it) to be able
to use these networks. The authentication scheme for the VPN only requires a password.
Consequently, a user who wants to connect on a trusted network—internal networks or
VPN—must provide her password in all cases, and be in a research center if she does
not connect on the VPN. In our implementation, an authentication attempt happening
on a trusted network will get assigned a low risk level RLN . Otherwise, the risk level
RLN is high. The usage of trusted networks to assign a risk-level concerning the location
of the user for the authentication attempt corresponds to the RBA-location defined by
Wiefling et al. [154].

Employees have a physical office in one of the 9 Inria centers. We believe they are
more likely to authenticate from the network of their center or from the VPN. We believe
the use of a limited number of trusted networks could help us increase the security by
reducing the trusted networks on which devices can be registered. Thus, we make the
hypothesis H1 that the registered devices of a user might be registered on at most 2
trusted networks.

5.2.2.3 Fingerprints coming from the same instance should be linked to-
gether

Concerning Challenge n°3 and the linkability of browser fingerprints coming from the
same browser instance, we use our algorithm presented and evaluated in Chapter 4. As
advised in Section 4.6, we will first use parameter values computed on the AmIUnique
dataset that have been found to be the best. However, we will evaluate the best weights
set and threshold for our new dataset, because each dataset has its own particularities,
which could change the computed scores and behaviors of the algorithm. When a user
tries to authenticate, the algorithm tries to link the submitted fingerprint to one of the
registered fingerprints. We explained in Section 5.1.1 the list of registered fingerprints
is formed by collecting the last fingerprint associated to each registered device. When

114 Advanced risk-based authentication using browser fingerprinting

comparing the submitted fingerprint to the registered ones, the scheme returns a risk
level RLF based on the comparison result:

• low. If the submitted fingerprint is equal or close enough to a registered fingerprint,
the risk level RLF for the authentication attempt made with this fingerprint is
considered as low, and the user proceeds to the next step of the authentication
scheme;

• high. If the submitted fingerprint cannot be linked to any of the registered
fingerprints for this user, the risk level RLF is high.

The global risk level RLG of the authentication scheme is computed by taking the
highest risk given by the 2 risk levels RLN and RLF . Thus, RLG is low only if both RLN

and RLF are low. In this case, the user will be able to authenticate—if the password is
validated. Otherwise, the risk level is high. In this case, users can have different risk
policies:

• Permissive: the authentication scheme allows the authentication attempt to
proceed despite the risk level being high, or

• Strict: the authentication scheme stops the authentication attempt. The user is
redirected on the authentication page with an error message. The error message
provided is generic to prevent potential attackers to know which factor or risk level
caused the authentication attempt to fail.

5.2.2.4 The authentication scheme should support the revocation of finger-
prints

We developed a management application for users to manage their accounts and fingerprint
data. The available actions are similar to the ones observed in existing applications
presented in Section 3.4.1. First, users are able to check their authentication attempts to
monitor any suspicious activity on their account. Additionally, they can manage their
registered devices and, to address Challenge n°4, remove them—for example if they no
longer have access to the device.

The application also allows users to configure their risk policy, which can either be
strict or permissive. As we do not want to degrade the user experience without the users
being informed, the default value is permissive. We also offer the possibility for users to
receive emails whenever an event requiring the attention of the user happens. We define
3 such events:

• A new fingerprint is registered on a trusted network.
• An authentication attempt is made using a fingerprint that cannot be linked to a

registered one, on a non-trusted network—no matter the result of the authentication
attempt.

• A registered device is removed via the interface of the management application.

5.2 Implementation 115

Users can configure if they want to receive email alerts concerning these events, or not.
By default, users receive alert emails for all these events.

We also provided the possibility for administrators to manage user accounts. Admin-
istrators have access to the authentication attempts, registered devices, fingerprints and
configuration for all users. Additionally, they can revoke a device or re-allow a device
that has been previously revoked.

5.2.2.5 The authentication scheme should minimize the impact to the user
experience

We aimed at limiting the impact on the user experience to validate Challenge n°5.
We monitored the time taken by the script to collect a fingerprint from various devices
and we estimated its duration to 400–500 milliseconds. Users could validate the form
before the fingerprint is collected, for example if they use a password manager that
automatically fills the username and password. While the validation of the form before
the collection of he fingerprint will cause the authentication attempt to fail, we believe
this is unlikely to happen in practice. In a first step, we monitor the collection time for
real users, before adapting our strategy according to the results.

5.2.3 Authentication scheme and CAS plugin
Globally, our authentication scheme can be seen as a Risk-Based Authentication scheme
with 2 features: i) the device feature, which corresponds to the collection and verification
of the fingerprint of the device used by the user to authenticate, and ii) the location
feature which corresponds to the collection and verification of the IP address of the user.
When authenticating, the user must validate either the device feature or the location
feature. If she can, the risk is low, and she is able to authenticate—if the submitted
password is correct. If she cannot validate any of these 2 features, the risk for the
authentication attempt is high. We implemented this authentication scheme in a CAS
plugin. Figure 5.3 presents the way our plugin integrates with the existing system and
how it modifies the authentication scheme. The existing components and steps are
presented in black, the new components added are presented in blue, and the new steps
in the authentication scheme are depicted in green. When the user browses the CAS
login page (1), she enters her username and password. During this period, the page loads
the fingerprinting script (2) that collects the user’s browser fingerprint (3). When the
user validates the form, it sends the username, password and fingerprint to the server (4).
First, the server checks if the username exists in the base (5). Then, the plugin gets the
registered fingerprints for this user from the database (6) and compares the submitted
fingerprint to the registered fingerprints (7). If the submitted fingerprint is linked to a
registered fingerprint, the database is updated and the process continues (9-11). If the

116 Advanced risk-based authentication using browser fingerprinting

Figure 5.3: Description of the new authentication scheme with our plugin and new
components.

CAS
service

CAS
Plugin

CAS login page

Database

FP
management

app

6) get reg. FPs
2) request
FP script

4) send
cred. & FP

13) monitor
data

1) browse to 12) browse to

10) check pw

9) update

3) return script
& collects FP

5) check
user

7) compare subm.
FP to reg. FPs

11) (dis)allow
auth. attempt

8) check user IP addr.

User

submitted fingerprint cannot be linked to any registered fingerprint, the IP address of
the user is checked to determine if the user is connected on a trusted network (8). If
she is, its fingerprint is registered (9), and the plugin ends its process. The CAS system
processes the password check (10) and allows the user to authenticate (11). Once the
user is authenticated, she can access the fingerprint management application (12) where
she can access her fingerprints, connection attempts and parameters (13).

Synthesis. In this section, we answer RQ6 about the user experience concerns of a
web authentication system using browser fingerprinting by presenting 3 main concerns.
Combined with the existing security requirements and properties from the state of the
art, we defined 5 challenges any authentication system leveraging browser fingerprinting
should respect. We implemented and integrated our authentication scheme in a CAS
plugin that aims at being integrated into a real-life authentication system. The following
section will evaluate the security gains of our solution and the impact on the user
experience.

5.3 Evaluation
We integrate our CAS plugin that implements our authentication scheme into a real
system and analyze the results in this section.

5.3 Evaluation 117

5.3.1 Dataset constitution
We first deployed our plugin in the certification environment of Inria. The certification
environment is a test environment for engineers before deploying software or updates
to the production environment. Thus, the users using the certification environment are
engineers and employees from the IT management department. Our plugin was integrated
in the environment in May 2021.

We only analyzed pseudonymised data from users who agreed to have their data
analyzed by Inria researchers. We discuss in more detail the conditions to exploit the
data in Section 5.4. The dataset, which we named certification dataset, is composed of 82
users, 250 fingerprints and 331 authentication attempts. The distribution of the number
of fingerprints and authentication attempts by users is presented in ??. 35 users have
one authentication attempt and one fingerprint, which means they only authenticated
once on the system. Other users have various numbers of authentication attempts and
fingerprints.

5.3.2 Key Performance Metrics
Concerning our challenges, we cannot evaluate our Challenge n°1 as we did not
implement it. Additionally, the Challenge n°4 is implemented and the system supports
revoking fingerprints. As the system has only been in the certification environment for
a limited duration (3 months) with a limited set of users, we believe the evaluation of
Challenge n°4 is not relevant with this dataset. Thus, it remains Challenges n°2, 3
and 5.

Challenge n°2 focuses on the device registration. As we leveraged trusted networks
to register devices, we aim at measuring the number of fingerprints registered on a trusted
network. This metric indicates how often users connect on a trusted network, and how
often users could have their authentication attempt blocked if they try to authenticate
from an non-trusted network and the linking algorithm cannot link their fingerprint.
Additionally, we measure the the number of trusted networks used by users to register
their fingerprints. According to this analysis, we might be able to confirm our hypothesis
H1 detailed in Section 5.2 about the number of trusted networks used by users to register
devices.

Challenge n°3 concerns the linkability of browser fingerprints. We will evaluate our
algorithm on this dataset the same way we did in Chapter 4. However, our certification
dataset was collected over a much shorter period with much less users. Only 47 users
authenticated more than once, and very few authenticated over several weeks. Because of
this, the average identification duration is 17 days with a standard deviation of 26 days.
In this case, the identification duration metric does not seem appropriate. Instead, we
define a new metric, the fingerprints number ratio which corresponds to the number of

118 Advanced risk-based authentication using browser fingerprinting

fingerprints in the longest identification chain divided by the number of total fingerprints
of the browser instance. Because we do not have the ground truth of the devices in the
context, we will consider that fingerprints belonging to the same user and sharing the
same OS and same browser come from the same instance.

Challenge n°5 aims at limiting the impact on the user experience. We already
partly addressed this challenge by leveraging trusted networks, which is a transparent
technique to register fingerprints. We identify 2 metrics to evaluate the impact of our
scheme on the user experience: the fingerprint collection time, which is measured on the
HTML page providing the authentication form to the user, and the linking algorithm
computation time, which is the time taken by our linking algorithm to provide a result.

5.3.3 Trusted network fingerprints and authentication attempts

In our dataset, all 331 authentication attempts happened on a trusted network. This
can be explained because the certification environment is only available behind an Inria
network, which corresponds precisely to the trusted networks we defined. This behavior
prevents us from conducting further analysis on this part, such as estimating how often
users authenticate on a trusted network.

Concerning the number of trusted networks used by users to register fingerprints, 54
users used a single trusted network while the remaining 28 users used 2 trusted networks.
Based on these observations, we confirm our hypothesis H1 made in Section 5.2.2.2
stating users might only use at most 2 trusted networks: the trusted network of the
research center they have their office in, and the VPN. This behavior will help us to
imagine more strict rules to register fingerprints, as detailed in Section 5.4.4.

5.3.4 Linking algorithm scores

We reran our linking algorithm on our dataset to estimate the best set of parameters for
this dataset. We grouped all the fingerprints of each user that share the same OS and
browser in a list Fud, and sorted Fud by timestamp. Then, for each fingerprint f of Fud,
we defined e as the fingerprint being right before f in Fud, and we ran our algorithm with
f as the submitted fingerprint and e as the registered fingerprint. Figure 5.4 presents
the fingerprints number ratio computed from the results given by our linking algorithm,
according to the chosen threshold and weight set. We can see all the weight sets behave
similarly: the ratio is 100% until a threshold of 0.65, which means there is only one
chain to this point that contains all the fingerprints Fud. This means that they all have
been correctly linked together. After, the ratio decreases slowly, reaching around 90%
for a threshold of 0.8, 75% for a threshold of 0.9 and 20% for 1. These results are quite
different from the ones we observe in Chapter 4.

5.3 Evaluation 119

Figure 5.4: Fingerprints number ratio according to the threshold and weight set

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

40

60

80

100

Ra
tio

 (i
n

%
)

Weight Set
W1
W2
W3
W4
W5

First, the results of the weight set W1 are similar to the results of the other weight
sets. This is due to the fact the attribute that changes the most is the screen attribute.
As we explained in Chapter 4, we anticipated this behavior by designing our weight sets
because some attributes, such as the screen, are unpredictable and can change if the
user connects an external screen to her computer. Because our weight sets W2 to W5
have been designed to take into consideration these changes, we expected the weight set
W1 to behave similarly or worse than the other weight sets.

Second, while the metric used is different, it appears our identification chains last
longer with this dataset than with the one described in Section 4.5. Thus, our results
seem better than the results we got in Chapter 4. Several parameters differ from the
previous evaluation, which can be explained by the following factors: i) the dataset
described in Chapter 4 is collected via a web extension, whose goal is to specifically
study browser fingerprints. In this context, users might want to monitor their fingerprint
and its evolution by modifying their browser and/or device configuration and by testing
fingerprinting defense. This could lead to a dataset with many fingerprint changes, which
are harder to link. Oppositely, the fingerprints of our certification dataset were collected
from users that do not have a specific interest to change their fingerprint on purpose.
Then, with less changes, fingerprints are easier to link. ii) The collection period for the
dataset used in Section 4.5 is 7 months compared to the 3 months of our certification
dataset. A longer collection period implies more difficulties to link fingerprints due to
the increased number of changes that can occur. While our results appear to be better,
they need to be confirmed with a larger dataset collected over a longer period.

120 Advanced risk-based authentication using browser fingerprinting

Figure 5.5: Distribution of the fingerprint collection time

0 1000 2000 3000 4000
Fingerprint collection time

(in milliseconds)

0

10

20

30

40

50

Co
un

t

5.3.5 Collection and analysis time
The distribution of the fingerprint collection time for our 331 authentication attempts
is presented in Figure 5.5. The median is 887 milliseconds, which is higher than the
time we estimated in Section 5.2.2. It still appears to be a decent collection time that
should not impact the user experience when filling and validating the authentication
form. The 90th percentile corresponds to 1, 879 milliseconds while the 95th percentile
corresponds to 2, 396 milliseconds. According to the time needed by users to fill the form
combined with the eventuality users could have password managers that can autofill the
authentication form, admins might want to set a higher time threshold to collect the
fingerprint to ensure it is available to be checked server-side. We discuss this possibility
in Section 5.4.3.

As explained in Section 5.1.2, the analysis time required to link fingerprints is critical
because this time is added to the global server response time. A high response time
will decrease the user experience. It is important to minimize the time taken by our
algorithm to link the submitted fingerprint to one of the registered ones. The distribution
of this time, combined with a linear regression, is presented on Figure 5.6. The time
grows linearly according to the number of registered fingerprints, which is a logical result
according to the design of our algorithm (rule-based). This shows the importance of only
taking the last fingerprint of each device to reduce the number of fingerprints in the list
of registered fingerprints, and so, the time taken by the linking algorithm.

Synthesis. In this section, we answer RQ7 about the security improvements and high
usability of a web authentication system using browser fingerprinting by proposing an

5.4 Discussion 121

Figure 5.6: Distribution of the linking algorithm analysis time and linear regression

0 2 4 6 8 10 12 14 16
Number of registered fingerprints

0

50

100

150

Ti
m

e
(in

 m
s)

evaluation of our risk-based authentication scheme using browser fingerprints. This
evaluation shows the interest of our technique concerning the limited impact on the
user experience. We look forward to integrate our CAS plugin into the production
environment to enhance the security for all Inria agents. This should allow us to benefit
from a larger dataset with several thousands of users, which will increase our knowledge
about the impact and benefits of our authentication scheme.

5.4 Discussion

5.4.1 Ethical considerations
We designed our authentication scheme and CAS plugin while being in constant communi-
cation with Inria’s Chief Information Officer (CIO) and the IT management department.
They imposed several constraints on the plugin, such as the use of trusted networks to
register devices and the default values given to the configuration for new users. They
validated each step and tested the prototype in several environments similar to the
production one before considering and validating the use of the plugin in production.

Concerning the data treatment aspects, we wrote and submitted several documents to
both Inria’s approval commissions and our national data protection authority (Commis-
sion Nationale de l’Informatique et des Libertés - CNIL) to validate our experiments, the
use of browser fingerprinting to strengthen web authentication and the fact researchers
could have access to the pseudonymized data. The use of browser fingerprinting for
authentication was validated by both commissions. Concerning the transmission of user
data to researchers, CNIL specifically asked to collect the explicit and knowledgeable
consent of users. Thus, we set up an additional parameter in the configuration of each
account, which indicates if the user agrees to share her pseudonymized data with Inria

122 Advanced risk-based authentication using browser fingerprinting

researchers. The default value for this parameter element is false, which means a user
has to explicitly go to the management application and activate this parameter for us to
access her pseudonymized data. Finally, personal information is pseudonymised before
we receive it. This includes the username, the nickname users can give to their registered
devices, and the name of the trusted network on which each device was enrolled.

5.4.2 Security versus user experience
We explained in Section 2.2.5 the security versus user experience balance that every
authentication scheme has to consider. RBA features, such as browser fingerprinting,
have a lighter impact on the user experience because: i) they can be collected without
any interaction from the user, ii) they only trigger more secure features, such as OTP,
when the risk level is estimated to be high. However, the features are collected on the
client-side and are more vulnerable to attacks. In our implementation, we used trusted
networks to register devices. Other techniques can be used to register devices, such
as SMS or email OTP. They have a stronger impact on the user experience but can
be considered as more secure, especially if no trusted networks exist, as is the case for
many online services. Additionally, the default value for the risk policy configuration is
permissive, which does not stop the authentication attempt when the global risk level
RLG is high. In our scheme, all the default configuration values and implementation
choices were meant to limit the impact on the user experience. While it leads to a
less-secure scheme compared to other possibilities we considered, our scheme is still an
improvement of the scheme that was only using passwords.

5.4.3 Client-side-generated information
Our Challenge n°1 mentions the fact that fingerprint spoofing should be hard for
an attacker. We explained in Section 5.2.2 that we used static browser fingerprinting
attributes to form a fingerprint. Static attribute values can more easily be collected by
an attacker, for instance on a phishing page. Several mechanisms can be set up to harden
the collection for unauthorized parties:

• We discussed the use of Laperdrix’s proposal to create dynamic canvas’ for web
authentication [116]. While we did not use dynamic fingerprints for our proof of
concept, this solution could improve the authentication scheme and harden the
collect of the fingerprint for an attacker.

• During fingerprint collection, we could use APIs that require the users permission
to access, such as the geolocation, as experimented by Preuveneers et al. [130]. It
would strengthen the fingerprinting feature as several attacks rely on collecting
user credentials, such as phishing, should also have to collect the user’s consent to
access the data. The use of these techniques would lower the risk for users to have

5.4 Discussion 123

their account compromised by these kind of attacks, but it would not completely
remove it in case of a similar phishing page and a naive user. Additionally, it would
degrade the user experience.

5.4.4 Device management rules

In our current implementation, the user can register any device while being connected
on any trusted network. This behavior might be too permissive and unnecessary as very
few users might need to authenticate or add new devices from multiple research centers.
We propose the 3 following configuration elements to improve security and limit the
registration of unwanted devices:

• Trusted networks list. Users might want to configure on which trusted net-
work(s) they allow device registration. According to our observations performed on
Section 5.3.3, the use of more than 2 trusted networks—the research center they
are located in, plus the VPN—should be rare. This improvement should reduce the
attack surface of our authentication scheme, as it lowers the geographic possibilities
for an attacker to be connected on a trusted network;

• Forbidden devices. Users could also restrict the type of devices that can be
registered on trusted networks. If a user does not own any Apple devices—and do
not intend to—she has a limited interest in allowing such devices to be registered
on her account. The management application could propose device classes, brands,
models, or OSes that should never be registered for the account, and rely, for
instance, on the User-Agent JavaScript attribute of the browser to determine if
the device should be registered. That would suppose users are not modifying their
fingerprint on purpose [150].

• Reading & writing rights. Once a device has its fingerprint registered, the user
has can perform sensitive operations with it, such as removing registered devices
or modifying the configuration of the account to adopt a permissive risk policy.
With this system, an attacker who gained access to the account can remove the
registered devices of the legitimate user. To mitigate the risk of users loosing
access to their account, we imagine a system of reading and writing rights for
the management application. The first registered device gains automatically both
reading and writing rights while all other devices only obtain reading rights when
registered. With this system, the user can only change her data—revoking a device,
updating her configuration or changing devices rights—on a device with writing
rights. In the case of a loss of the only device with writing rights, we believe the
user could reach the administrators to request an update of another device’s rights
by providing a proof of her identity. This is also the current process used by Inria
when a password is lost.

124 Advanced risk-based authentication using browser fingerprinting

5.4.5 Compromised device

Several authentication factors can be changed when they are compromised. For instance,
users of web authentication systems are often requested to update their password if they
observe suspicious activity, and to disconnect their account from all the devices. This
way, the session of the attacker is also closed and he has to learn the new password of the
user to re-gain access to the account. This behavior can be easily setup for knowledge
factors, but is difficult for ownership factors as described in Section 2.2.5.2. While a
user can technically replace a phone—which is an ownership factor—if hers is stolen or
compromised, it costs her money and cannot be seen as an easy way to maintain the
security level of the authentication scheme. A worse situation happens when an inherence
factor is compromised. As the information provided by the user is inherent to the user
itself, she cannot replace it at all. Concerning browser fingerprinting, an attacker can
authenticate if he provides a fingerprint that is linked to a registered device. In this
situation, the attacker is able to authenticate and knows the fingerprint he provided is
close enough to a registered device. This could mean the whole device is compromised.
In fact, when we talk about a registered device, we talk about the combination of the
layers that provide the values of the browser fingerprinting attributes—hardware, OS,
browser, configuration, and maybe more. As a change of browser impacts the fingerprint
in many ways (see Section 4.2.3), a solution to be able to continue using this device for
authentication would be to switch browsers. This way, the user can still use her device
while the attacker has to learn how to get close to the fingerprint generated by the new
browser used by the user. While this solution is clearly not ideal because it impacts the
user and her habits—and does not work in the case of a stolen device, for instance—it
can still be acceptable for some users.

5.4.6 Adding features to the authentication scheme

We believe we could use additional features to compute our global risk-level RLG. Features,
such as mouse and keystroke dynamics [144] and login time [102], could reinforce our
risk-based model and improve the security of our authentication scheme. However, each
of these features has specific constraints concerning their collection or analysis and
might not be used all together at the same time. For instance, when a user updates her
password, its keystroke dynamics need to be learned again. Thus, it requires several
successful authentication attempts for both the user to get used to typing it and for
the authentication scheme to learn enough to build a stable model that can distinguish
legitimate attempts from fake ones originating from attackers. Additionally, several RBA
features might be useless according to the authentication context and device used, such
as the mouse dynamics on a mobile device or the keystroke dynamics if the user uses a
password manager that autofills passwords.

5.5 Conclusion 125

5.5 Conclusion
In this chapter we studied the feasibility of using browser fingerprinting as a feature for
risk-based authentication. We answered RQ6 about the user experience concerns of an
authentication scheme using browser fingerprinting by defining 3 concerns focused on
the user experience that web authentication systems with browser fingerprinting should
address. We extended the state of the art by designing an authentication scheme using
browser fingerprinting and defining several challenges such schemes should meet to be
secure and have a negligible impact on the user experience. We addressed many of our
challenges by proposing innovative solutions, such as the use of trusted networks to register
devices. We implemented our authentication scheme in Inria’s SSO authentication
system. We evaluated the benefits of our technique on the certification environment. We
showed our linking algorithm designed in Chapter 4 performs well and is able to link
fingerprints. We monitored the time taken by both fingerprint collection and fingerprint
linking and show the impact on the user experience is negligible in most cases. These
results demonstrate the relevance of browser fingerprinting when it comes to strengthen
web authentication, which answers our RQ7. Finally, we discussed several options to
strengthen our authentication scheme, such as restricting the list of trusted networks or
the types of device that can be registered, and other features that could be used in our
authentication scheme.

These experiments demonstrate browser fingerprinting can be used as a feature for
risk-based authentication to improve security while having a negligible impact on the
user experience.

Chapter 6

Conclusion

6.1 Contributions
The main objective of this thesis was to study how browser fingerprinting can strengthen
the security of web authentication systems. I reviewed the state of the art related to
mechanisms that improve the security of web authentication systems. I also presented
browser fingerprinting and its current uses. I identified interesting properties concerning
a browser fingerprint that are relevant for web authentication. In this thesis, I proposed
3 contributions to increase the state of the art on the uses of browser fingerprinting for
web authentication.

6.1.1 FP-Redemption: Studying Browser Fingerprinting Adop-
tion for the Sake of Web Security

Previous studies on the adoption of browser fingerprinting on the Web had not studied
sensitive pages because they are often available after a certain precise set of actions, such
as filling forms or adding an element to a basket. With this contribution, I investigated
the following research questions:
RQ1: Are browser fingerprints collected in the wild, on pages that process sensitive data
that needs to be protected?
RQ2: How are browser fingerprints used to protect user accounts and websites against
stolen credentials and cookies hijacking?

I targeted 4 types of pages that process sensitives information: Sign-in, Sign-up, Payment
and Basket pages. I manually studied 1, 485 web pages from 446 websites, and monitored
the browser fingerprinting attributes accessed by scripts via an extension. I designed and
implemented a technique to classify scripts and I detected 169 fingerprinting scripts in
my dataset. I showed as many fingerprinting scripts are included in sensitive pages as in

128 Conclusion

non-sensitive pages. This result allows me to answer RQ1 in the affirmative. I analyzed
the providers of these scripts and found 12 security-centered organizations that collect
browser fingerprints. I designed 2 attack models, stolen credentials and cookie hijacking,
and evaluated the uses of browser fingerprinting for security on these pages by testing
our attack in real-world conditions. I observed one website used browser fingerprinting to
enhance web security against stolen credentials by requiring an additional proof of identity
when the user’s fingerprint was different, but I found no website being protected against
cookie hijacking. These results, which answer RQ2, drove my 2 other contributions to
show that browser fingerprinting can be used to strengthen web authentication.

6.1.2 FP-Controlink: Studying fingerprinting under a controlled
environment to link fingerprints

In this contribution, I studied browser fingerprinting in a controlled environment to
increase the knowledge concerning the causes of diversity and evolution of fingerprints,
and leverage this knowledge to build a browser fingerprints linking algorithm. I tackled
the following research questions:
RQ3: How does the change of a hardware or a software component in a device affect its
browser fingerprint?
RQ4: What is the impact of a browser update on the fingerprint and can it be anticipated
or even predicted?
RQ5: How to design a browser fingerprint linking algorithm for authentication that
combines efficiency and reliability?

I used desktop devices with all major OSes—Windows, MacOS, Linux—and more
than 20 different mobile devices from various vendors with the major OSes—MacOS
& Android. I collected the state of the art attributes, as well as new ones, to study
controlled fingerprints while having the ground truth concerning the hardware and
software of the device. I answered RQ3 by showing several attributes are impacted
by several components of the device—hardware, OS, browser, configuration—which
make them interesting to increase browser fingerprint uniqueness. I demonstrated many
attributes rarely or never change when updating browsers, which make them interesting
to collect stable fingerprints to link over time. Through these results, I answered RQ4.
I used this knowledge to define weights for each attribute based on their stability and
uniqueness properties. I built a linking algorithm for web authentication that compares
attribute values and computes a similarity score leveraging the previously-defined weights.
I collected a dataset of 952, 828 fingerprints generated from 64, 235 browser instances
and defined 2 modes to evaluate the algorithm. The safe mode evaluation demonstrated
the algorithm is able to properly link browser fingerprints generated by the same browser

6.2 Short-term perspectives 129

instance. The attack mode evaluation showed the algorithm distinguishes browser
fingerprints coming from different instances, which reduces the risk that an attacker
gains access to the account. These results show a rule-based algorithm is relevant to link
fingerprints in an authentication context, which answers RQ5 in the affirmative.

6.1.3 Advanced risk-based authentication using browser finger-
printing

My third contribution studies the use of browser fingerprinting when integrated into a
risk-based authentication scheme. I answered the following research questions:

RQ6: What are the user experience concerns that should be addressed in a web authen-
tication system that uses browser fingerprinting?

RQ7: Does the usage of browser fingerprinting for authentication provide security
improvements and high usability?

I designed an authentication scheme using browser fingerprinting. To answer RQ6,
I defined several challenges regarding the security requirements and the impact on the
user experience any implementation should rise up to. I implemented our authentication
scheme in the existing authentication system of Inria and explained our answers to
all the challenges. I evaluated the operation of the authentication scheme on a dataset
of 82 users and 250 fingerprints. I showed the linking algorithm designed in Chapter 4
behaves correctly in an authentication system, and demonstrated the impact on the
user experience is negligible in most cases. Based on my results, I explained browser
fingerprinting is suitable to enhance web authentication with limited impact on the
user experience, which answers RQ7. I presented the limitations of the authentication
scheme, such as the possibility for an attacker to collect the browser fingerprint of the
user. Finally, I discussed security improvements to strengthen the authentication scheme
and counter its limitations.

6.2 Short-term perspectives
These contributions open new research questions and provide short-term perspectives
that would be interesting to study.

6.2.1 Discovering new fingerprinting JavaScript attributes
New features are constantly being implemented in browsers to adapt the Web to new types
of devices or to allow new types of applications. Thus, the constant evolution of browser
APIs requires being continuously monitored to discover new browser fingerprinting

130 Conclusion

attributes. We believe several APIs that are in the design, development or testing phases
could increase the identification potential of browser fingerprints. We provide 3 examples:

• The Keyboard API allows scripts to access the keyboard layout of the user. Exam-
ples of values are presented below. First, it could be used in combination with the
language to detect spoofers. We guess few people would have a keyboard layout
that is not configured to easily type in their language. Second, users with very
specific keyboard layouts, such as Dvorak or Bepo could be identified.

Listing 6.1: Azerty keyboard results
1 > const lm = await

navigator.keyboard.getLayoutMap
();

2 > for(e of l.entries ()) {
3 > console.log (e)
4 > }
5 ["KeyQ", "a"]
6 ["KeyZ", "w"]
7 ...

Listing 6.2: Qwerty keyboard results
1 > const lm = await

navigator.keyboard.getLayoutMap
();

2 > for(e of l.entries ()) {
3 > console.log (e)
4 > }
5 ["KeyQ", "q"]
6 ["KeyZ", "z"]
7 ...

• Several APIs are being proposed to increase functionality concerning screens, such
as the Screen Fold API or the Visual Viewport API [64]. These APIs could
provide additional information concerning screens and their configurations. It could
help distinguish different browsing contexts for users that have several screens.
This API is only available in Chrome for the moment, behind a configuration flag.

• Browser fingerprinting currently uses font enumeration via span’s width and height
measurements. As we described in Section 2.3.3, the technique can only test one
font at a time. Since version 87, Chrome has integrated a Local Font Access API
that can be used to query the list of fonts installed on the device. At the moment,
the API is only available when activating the flag #font-access. When activated,
it gives access to the navigator.fonts.query() function that provides a popup
message to the user (see below) to allow a set of fonts to be returned. The code
below queries the list of fonts and prints the information of the first font.

6.2 Short-term perspectives 131

1 > const pickedFonts = await
navigator.fonts.query ();

2 // Process is blocked until the user
allows a set of fonts to be
accessible (see popup on the right)

3 > console.log (pickedFonts.length)
4 907
5 > console.log (pickedFonts [0])
6 FontMetadata {
7 family: " Abyssinica SIL"
8 fullName: " Abyssinica SIL"
9 italic: false

10 postscriptName: "
AbyssinicaSIL-Regular "

11 stretch: 1
12 style: " Regular "
13 weight: 400
14 }

These attributes—among others—are currently under development but it would be
interesting to start studying them to understand their properties and how fingerprinting
can benefit from them. In particular, the questions to be answered are:

• Are they providing highly distinguishable values for a given population?
• Are they stable enough to improve the linkability of fingerprints coming from the

same browser instance?
• Can these attributes be used in combination with existing attributes to detect

inconsistent fingerprints?

6.2.2 Studying attacks targeting fingerprinting-based authenti-
cation systems

I mentioned in Section 2.2.2 the threat phishing represents for web authentication. A
user not paying attention can easily believe being on the legitimate authentication page
when entering her credentials. Additional factors, features for risk-based authentication,
or technique to check the user’s identity are getting more used on the Web to strengthen
authentication systems. In this context, I think they will be more targeted by attackers
in the future. Particularly, static browser fingerprints can be easily collected without the
user noticing. While phishing attacks are known to be large-scale attacks that require
little effort, I believe it could be interesting to study if phishing pages show an interest in
browser fingerprinting. In this context, I believe phishing can be adapted into 2 attack
models when targeting an authentication system that uses browser fingerprints:

132 Conclusion

• The attacker is not aware of the use of browser fingerprinting to enhance web au-
thentication. According to the resources he copies from the targeted authentication
page, he might collect the fingerprint of the targeted user, but will not use it when
trying to authenticate on the targeted website.

• The attacker knows browser fingerprinting is used to strengthen web authentication.
He collects the username, password and the fingerprint of his victim and replays
her fingerprint when trying to authenticate on the targeted website with the stolen
username and password.

A comprehensive study on this topic should monitor fingerprint collection, their
forwarding to the phishing server, and all the accesses to the compromised account
to understand how these attack models are used and deployed by attackers. More
formalized, it could answer the following questions:

• Are phishing attacks collecting browser fingerprints?
• Are the collected fingerprints used to bypass the fingerprinting verification setup

by websites?
Attackers might use other techniques to collect users’ credentials, such as data leaks.
In this attack, we can imagine both passwords and fingerprints can be compromised.
According to the age of the leak, the fingerprints contained in the database might have
evolved since. Thus, as the attacker does not have access to the device to recover the
fingerprint, he would have to calculate the evolution of the fingerprint present in the
leak to successfully attack the authentication system. Based on this attack model, the
following question could be studied:

• Does the evolution of a fingerprint can be calculated without having access to the
device?

6.2.3 Investigating Web Assembly technology

We explained in Section 4.2.1.1 that there is currently no attribute whose value only
changes when the hardware of the device changes. Formalized differently, there is
currently no attribute in the state-of-the-art that only identifies the hardware layer of the
device. The values of attributes that identify hardware are at least impacted by other
layers of the device—OS, browser, configuration. I believe WebAssembly (Wasm) could
tackle this problem. It is a binary instruction format for stack-based virtual machines
that can be deployed on the web for client applications [80]. WebAssembly can be
compiled from many languages, such as C, C++ or Rust. Its integration into a web
page is simple and JavaScript can be used to interact with the WebAssembly code.
Its main advantage is its quickness to perform computations compared to JavaScript.
I believe the following questions would be interesting to study to understand the benefits
browser fingerprinting can get from this technology:

6.3 Long-term perspectives 133

• Can the WebAssembly technology collect identifying information about the device
that can be included into a browser fingerprint?

• Are the information collected via WebAssembly only hardware-related and are
these information cross-browser?

6.3 Long-term perspectives
The long-term perspectives about browser fingerprinting are uncertain. First, the position
of web actors towards browser fingerprinting differs. Some browser vendors, such as
Google, continue to implement new APIs in their browsers to allow new applications
and possibilities on the Web. While these are leveraged to propose new features to
users, the privacy and security risks do not seem to be a key argument when these APIs
are developed. This aspect, as well as tracking, is often driven by economic aspects
because some actors generate profit from the Web. Oppositely, other Web actors—such
as mozilla, Brave or the W3C—do not include APIs that can have unwelcome privacy
effects. These actors often prioritize the privacy and security aspects of browsing and
insist on designing "privacy-friendly" features when developing new APIs. More globally,
these 2 aspects of the Web are difficult to reconciliate. As fingerprinting relies on these
APIs to exist, the direction taken by Web actors will determine the future of the technique.
Which of these aspects will gain importance over the other in the upcoming years? The
direction Web actors will take and how fingerprinting will evolve is all but certain.

Another concern is the evolution of Web security. Users are now encouraged to create
accounts on many of the websites they browse. In this context, attackers will continue to
challenge authentication systems and other security measures taken to protect users. As
the use of secure authentication schemes, including multi-factor or risk-based approaches,
is not dominant on the Web, users will continue to be vulnerable to password-based attack
models. With the democratization of tools to automatically control browsers, attacks
will manage to mimic more precisely human behaviour by simulating user interactions
such as keystrokes, mouse movements or finger sliding on a mobile. Attacks will also be
launched at larger scale, and affect many more users. In the future, what will be the
major web attacks affecting users? What role, if any, will browser fingerprinting play in
the security of the Web of the future?

6.4 Concluding note
The major state of the art about browser fingerprinting concerns its ability to track
people. Tracking actors are using browser fingerprinting to follow users across websites,
to collect information about them. These behaviors are seen as harmful and cause Web
actors to react. The technique is getting more and more attention from browser vendors

134 Conclusion

themselves and regulation authorities. Firefox, Safari and Brave have now deployed
several defense mechanisms based on filter lists or explicit authorization from the user for
scripts to access attributes. Additionally, a browser fingerprint is considered as personal
data. Thus, regulation authorities increase the rules around this technique to ensure user
data are protected and collected with the users’ consent. This global state of mind of the
Web actors about the harmful uses of browser fingerprinting might be partly erroneous.
While it has been shown that fingerprinting is used for tracking, I demonstrate it can be
used for virtuous purposes by extending the state of the art concerning the use of browser
fingerprinting for web authentication. I hope these contributions will help to consider
browser fingerprinting not only for bad purposes but also for relevant and privacy-friendly
ones.

Bibliography

[1] Adblockplus. https://adblockplus.org/.

[2] Adurey gitlab - authentication with fingerprinting demo. https://gitlab.com/
adurey/demo-fp-authentication.

[3] Adurey gitlab - controlled environment. https://gitlab.com/adurey/
controlled-environment.

[4] Adurey gitlab - fingerprinting monitoring extension. https://gitlab.com/adurey/
fp-monitor.

[5] Adurey gitlab - scripts classification technique. https://gitlab.com/adurey/
scripts-classification-technique.

[6] Anti-phishing working group - phishing activity trends report - 1st quarter 2021.
https://docs.apwg.org/reports/apwg_trends_report_q1_2021.pdf.

[7] Apple - app store review guidelines – apple developper. https://developer.apple.
com/app-store/review/guidelines/#software-requirements.

[8] Apple - intelligent tracking prevention. https://webkit.org/blog/7675/
intelligent-tracking-prevention.

[9] Apple introduces macos mojave. https://www.apple.com/newsroom/2018/06/
apple-introduces-macos-mojave.

[10] Audiocontext fingerprint test page. https://audiofingerprint.openwpm.com/.

[11] Bad Bot Report 2021: The Pandemic of the Internet. https://www.imperva.com/
resources/resource-library/reports/bad-bot-report/.

[12] Blink docker. https://github.com/plaperdr/blink-docker.

[13] Blue cava. http://bluecava.com.

[14] Brave - a long list of ways brave goes beyond other browsers to protect your privacy.
https://brave.com/privacy-features/.

[15] Brave - fingerprinting protections v2: Farbling and cross-origin. https://github.
com/brave/brave-browser/issues/8787.

https://adblockplus.org/
https://gitlab.com/adurey/demo-fp-authentication
https://gitlab.com/adurey/demo-fp-authentication
https://gitlab.com/adurey/controlled-environment
https://gitlab.com/adurey/controlled-environment
https://gitlab.com/adurey/fp-monitor
https://gitlab.com/adurey/fp-monitor
https://gitlab.com/adurey/scripts-classification-technique
https://gitlab.com/adurey/scripts-classification-technique
https://docs.apwg.org/reports/apwg_trends_report_q1_2021.pdf
https://developer.apple.com/app-store/review/guidelines/#software-requirements
https://developer.apple.com/app-store/review/guidelines/#software-requirements
https://webkit.org/blog/7675/intelligent-tracking-prevention
https://webkit.org/blog/7675/intelligent-tracking-prevention
https://www.apple.com/newsroom/2018/06/apple-introduces-macos-mojave
https://www.apple.com/newsroom/2018/06/apple-introduces-macos-mojave
https://audiofingerprint.openwpm.com/
https://www.imperva.com/resources/resource-library/reports/bad-bot-report/
https://www.imperva.com/resources/resource-library/reports/bad-bot-report/
https://github.com/plaperdr/blink-docker
http://bluecava.com
https://brave.com/privacy-features/
https://github.com/brave/brave-browser/issues/8787
https://github.com/brave/brave-browser/issues/8787

136 Bibliography

[16] Brave - how do i manage flash audio & video. https://support.brave.com/hc/en-us/
articles/360018163151-How-do-I-manage-Flash-audio-video-.

[17] Brave, fingerprinting, and privacy budgets. https://brave.com/
brave-fingerprinting-and-privacy-budgets/.

[18] Bug 1517: Reduce precision of time for JavaScript. https://gitweb.torproject.org/
user/mikeperry/tor-browser.git/commit/?h=bug1517.

[19] Canvas fingerprinting on the web. https://antoinevastel.com/browserfingerprinting/
2019/02/19/canvas-fingerprint-on-the-web.html.

[20] Chrome - autoplay policy changes. https://developers.google.com/web/updates/
2017/09/autoplay-policy-changes.

[21] Chrome - manifest : Web accessible resources. https://developer.chrome.com/docs/
extensions/mv3/manifest/web_accessible_resources/.

[22] Chrome - stable release: Google chrome is out of beta! https://chromereleases.
googleblog.com/2008/12/stable-release-google-chrome-is-out-of.html.

[23] Chrome status - feature: Multi-screen window placement. https://chromestatus.
com/feature/5252960583942144.

[24] Chrome status - return empty for navigator.plugins and navigator.mimetypes.
https://www.chromestatus.com/feature/5741884322349056.

[25] Chromium - speeding up chrome’s release cycle. https://blog.chromium.org/2021/
03/speeding-up-release-cycle.html.

[26] Cli browser. https://line-mode.cern.ch/.

[27] Coinbase. https://www.coinbase.com.

[28] Disconnect tracking protection. https://github.com/disconnectme/
disconnect-tracking-protection.

[29] Duckduckbot. https://help.duckduckgo.com/duckduckgo-help-pages/results/
duckduckbot/.

[30] Easylist. https://easylist.to/easylist/easylist.txt.

[31] Easyprivacy. https://easylist.to/easylist/easyprivacy.txt.

[32] Everything you need to know about emoji. https://www.smashingmagazine.com/
2016/11/character-sets-encoding-emoji/.

[33] Fingerprintjs. https://github.com/Valve/fingerprintjs.

[34] Firefox - enhanced tracking protection in firefox for desktop. https://support.
mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop.

https://support.brave.com/hc/en-us/articles/360018163151-How-do-I-manage-Flash-audio-video-
https://support.brave.com/hc/en-us/articles/360018163151-How-do-I-manage-Flash-audio-video-
https://brave.com/brave-fingerprinting-and-privacy-budgets/
https://brave.com/brave-fingerprinting-and-privacy-budgets/
https://gitweb.torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517
https://gitweb.torproject.org/user/mikeperry/tor-browser.git/commit/?h=bug1517
https://antoinevastel.com/browser fingerprinting/2019/02/19/canvas-fingerprint-on-the-web.html
https://antoinevastel.com/browser fingerprinting/2019/02/19/canvas-fingerprint-on-the-web.html
https://developers.google.com/web/updates/2017/09/autoplay-policy-changes
https://developers.google.com/web/updates/2017/09/autoplay-policy-changes
https://developer.chrome.com/docs/extensions/mv3/manifest/web_accessible_resources/
https://developer.chrome.com/docs/extensions/mv3/manifest/web_accessible_resources/
https://chromereleases.googleblog.com/2008/12/stable-release-google-chrome-is-out-of.html
https://chromereleases.googleblog.com/2008/12/stable-release-google-chrome-is-out-of.html
https://chromestatus.com/feature/5252960583942144
https://chromestatus.com/feature/5252960583942144
https://www.chromestatus.com/feature/5741884322349056
https://blog.chromium.org/2021/03/speeding-up-release-cycle.html
https://blog.chromium.org/2021/03/speeding-up-release-cycle.html
https://line-mode.cern.ch/
https://www.coinbase.com
https://github.com/disconnectme/disconnect-tracking-protection
https://github.com/disconnectme/disconnect-tracking-protection
https://help.duckduckgo.com/duckduckgo-help-pages/results/duckduckbot/
https://help.duckduckgo.com/duckduckgo-help-pages/results/duckduckbot/
https://easylist.to/easylist/easylist.txt
https://easylist.to/easylist/easyprivacy.txt
https://www.smashingmagazine.com/2016/11/character-sets-encoding-emoji/
https://www.smashingmagazine.com/2016/11/character-sets-encoding-emoji/
https://github.com/Valve/fingerprintjs
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop

Bibliography 137

[35] Firefox - patch uplifting rules. https://wiki.mozilla.org/Release_Management/
Uplift_rules.

[36] Firefox - protection against fingerprinting. https://support.mozilla.org/en-US/kb/
firefox-protection-against-fingerprinting.

[37] Firefox - public data report. https://data.firefox.com/dashboard/usage-behavior.

[38] Firefox - release process. https://wiki.mozilla.org/Release_Management/Release_
Process.

[39] Firefox bugzilla - add font.name-list.* for emoji. https://bugzilla.mozilla.org/show_
bug.cgi?id=1032671.

[40] Firefox bugzilla - add mp3 decoding support to ffvpx. https://bugzilla.mozilla.org/
show_bug.cgi?id=1582271.

[41] Firefox bugzilla - don’t reveal navigator.buildid to every site on the web. https:
//bugzilla.mozilla.org/show_bug.cgi?id=583181.

[42] Firefox bugzilla - flac support / create flac mediadatademuxer. https://bugzilla.
mozilla.org/show_bug.cgi?id=1195723.

[43] Firefox bugzilla - remove "always activate" and "remember this decision" flash
options in firefox 69. https://bugzilla.mozilla.org/show_bug.cgi?id=1519434.

[44] Firefox bugzilla - remove deprecated navigator.battery api. https://bugzilla.mozilla.
org/show_bug.cgi?id=1259335.

[45] Firefox bugzilla - remove registercontenthandler(). https://bugzilla.mozilla.org/
show_bug.cgi?id=1398169.

[46] Firefox bugzilla - remove web content access to battery api. https://bugzilla.mozilla.
org/show_bug.cgi?id=1313580.

[47] Firefox bugzilla - replace emojione with a free emoji font. https://bugzilla.mozilla.
org/show_bug.cgi?id=1358240.

[48] Firefox bugzilla - ship an emoji font on windows xp-7. https://bugzilla.mozilla.org/
show_bug.cgi?id=1231701.

[49] Firefox bugzilla - webgl is (accidentally?) blacklisted for gtx1060/nouveau/ubuntu
19.04 while webrender is running fine. https://bugzilla.mozilla.org/show_bug.cgi?
id=1563854.

[50] Firefox webextensions may be used to identify you on the internet. https://www.
ghacks.net/2017/08/30/firefox-webextensions-may-identify-you-on-the-internet/.

[51] Gdpr - article 34 : Communication of a personal data breach to the data subject.
https://www.privacy-regulation.eu/en/34.htm.

[52] Googlebot. https://developers.google.com/search/docs/advanced/crawling/
googlebot.

https://wiki.mozilla.org/Release_Management/Uplift_rules
https://wiki.mozilla.org/Release_Management/Uplift_rules
https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://data.firefox.com/dashboard/usage-behavior
https://wiki.mozilla.org/Release_Management/Release_Process
https://wiki.mozilla.org/Release_Management/Release_Process
https://bugzilla.mozilla.org/show_bug.cgi?id=1032671
https://bugzilla.mozilla.org/show_bug.cgi?id=1032671
https://bugzilla.mozilla.org/show_bug.cgi?id=1582271
https://bugzilla.mozilla.org/show_bug.cgi?id=1582271
https://bugzilla.mozilla.org/show_bug.cgi?id=583181
https://bugzilla.mozilla.org/show_bug.cgi?id=583181
https://bugzilla.mozilla.org/show_bug.cgi?id=1195723
https://bugzilla.mozilla.org/show_bug.cgi?id=1195723
https://bugzilla.mozilla.org/show_bug.cgi?id=1519434
https://bugzilla.mozilla.org/show_bug.cgi?id=1259335
https://bugzilla.mozilla.org/show_bug.cgi?id=1259335
https://bugzilla.mozilla.org/show_bug.cgi?id=1398169
https://bugzilla.mozilla.org/show_bug.cgi?id=1398169
https://bugzilla.mozilla.org/show_bug.cgi?id=1313580
https://bugzilla.mozilla.org/show_bug.cgi?id=1313580
https://bugzilla.mozilla.org/show_bug.cgi?id=1358240
https://bugzilla.mozilla.org/show_bug.cgi?id=1358240
https://bugzilla.mozilla.org/show_bug.cgi?id=1231701
https://bugzilla.mozilla.org/show_bug.cgi?id=1231701
https://bugzilla.mozilla.org/show_bug.cgi?id=1563854
https://bugzilla.mozilla.org/show_bug.cgi?id=1563854
https://www.ghacks.net/2017/08/30/firefox-webextensions-may-identify-you-on-the-internet/
https://www.ghacks.net/2017/08/30/firefox-webextensions-may-identify-you-on-the-internet/
https://www.privacy-regulation.eu/en/34.htm
https://developers.google.com/search/docs/advanced/crawling/googlebot
https://developers.google.com/search/docs/advanced/crawling/googlebot

138 Bibliography

[53] have i been pwned? https://haveibeenpwned.com/.

[54] History of phishing. https://www.phishing.org/history-of-phishing.

[55] History of the browser user-agent string. https://webaim.org/blog/
user-agent-string-history/.

[56] Http over tls. https://datatracker.ietf.org/doc/html/rfc2818.

[57] Mdn - cookies. https://developer.mozilla.org/fr/docs/Web/HTTP/Cookies.

[58] Mdn - keyboard api. https://developer.mozilla.org/en-US/docs/Web/API/
Keyboard_API.

[59] Mdn - performance.now(). https://developer.mozilla.org/en-US/docs/Web/API/
Performance/now.

[60] Mdn - vendor prefix. https://developer.mozilla.org/en-US/docs/Glossary/Vendor_
Prefix.

[61] Mdn - webvr api. https://developer.mozilla.org/en-US/docs/Web/API/WebVR_
API.

[62] Mozilla - overscripted web: Data analysis in the open. https://github.com/mozilla/
overscripted.

[63] Mozilla - the history of web browsers. https://www.mozilla.org/en-US/firefox/
browsers/browser-history/.

[64] Multi-screen window placement on the web. https://github.com/webscreens/
window-placement.

[65] Noscript. https://noscript.net/.

[66] Openam. https://github.com/OpenIdentityPlatform/OpenAM.

[67] Petportal. http://fingerprint.pet-portal.eu.

[68] Project Emoji: The complete redesign. https://blogs.windows.com/
windowsexperience/2016/08/04/project-emoji-the-complete-redesign/.

[69] Qwant web crawler. https://help.qwant.com/bot/.

[70] Random agent spoofer. https://github.com/dillbyrne/random-agent-spoofer.

[71] Rfc 7231 - hypertext transfer protocol (http/1.1): Semantics and content. https:
//tools.ietf.org/html/rfc7231.

[72] Safari blog - auto-play policy changes for macos. https://webkit.org/blog/7734/
auto-play-policy-changes-for-macos/.

[73] Swiftshader. https://github.com/google/swiftshader.

[74] Thoughts on flash. https://en.wikipedia.org/wiki/Thoughts_on_Flash.

https://haveibeenpwned.com/
https://www.phishing.org/history-of-phishing
https://webaim.org/blog/user-agent-string-history/
https://webaim.org/blog/user-agent-string-history/
https://datatracker.ietf.org/doc/html/rfc2818
https://developer.mozilla.org/fr/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/API/Keyboard_API
https://developer.mozilla.org/en-US/docs/Web/API/Keyboard_API
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix
https://developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix
https://developer.mozilla.org/en-US/docs/Web/API/WebVR_API
https://developer.mozilla.org/en-US/docs/Web/API/WebVR_API
https://github.com/mozilla/overscripted
https://github.com/mozilla/overscripted
https://www.mozilla.org/en-US/firefox/browsers/browser-history/
https://www.mozilla.org/en-US/firefox/browsers/browser-history/
https://github.com/webscreens/window-placement
https://github.com/webscreens/window-placement
https://noscript.net/
https://github.com/OpenIdentityPlatform/OpenAM
http://fingerprint.pet-portal.eu
https://blogs.windows.com/windowsexperience/2016/08/04/project-emoji-the-complete-redesign/
https://blogs.windows.com/windowsexperience/2016/08/04/project-emoji-the-complete-redesign/
https://help.qwant.com/bot/
https://github.com/dillbyrne/random-agent-spoofer
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/
https://webkit.org/blog/7734/auto-play-policy-changes-for-macos/
https://github.com/google/swiftshader
https://en.wikipedia.org/wiki/Thoughts_on_Flash

Bibliography 139

[75] Top 10 types of phishing emails. https://www.securitymetrics.com/blog/
top-10-types-phishing-emails.

[76] Tor - canvas test. https://people.torproject.org/~brade/tests/canvasTest.html.

[77] Tor - noscript. https://support.torproject.org/glossary/noscript/.

[78] Tor release - tor browser 5.5 is released. https://blog.torproject.org/
tor-browser-55-released.

[79] ublock origin. https://ublockorigin.com/.

[80] Web assembly. https://webassembly.org/.

[81] What is a spambot. https://www.cloudflare.com/learning/bots/what-is-a-spambot.

[82] Wikipedia - safari version history. https://en.wikipedia.org/wiki/Safari_version_
history.

[83] Worldwideweb browser. https://worldwideweb.cern.ch/browser/.

[84] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juárez, Arvind Narayanan,
and Claudia Díaz. The web never forgets: Persistent tracking mechanisms in the
wild. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, Scottsdale,
AZ, USA, November 3-7, 2014, pages 674–689. ACM, 2014.

[85] Gunes Acar, Marc Juárez, Nick Nikiforakis, Claudia Díaz, Seda F. Gürses, Frank
Piessens, and Bart Preneel. Fpdetective: dusting the web for fingerprinters. In
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS’13, Berlin, Germany,
November 4-8, 2013, pages 1129–1140. ACM, 2013.

[86] Nasser Mohammed Al-Fannah and Wanpeng Li. Not all browsers are created
equal: Comparing web browser fingerprintability. In Satoshi Obana and Koji Chida,
editors, Advances in Information and Computer Security - 12th International
Workshop on Security, IWSEC 2017, Hiroshima, Japan, August 30 - September
1, 2017, Proceedings, volume 10418 of Lecture Notes in Computer Science, pages
105–120. Springer, 2017.

[87] Furkan Alaca and Paul C. van Oorschot. Device fingerprinting for augmenting
web authentication: classification and analysis of methods. In Stephen Schwab,
William K. Robertson, and Davide Balzarotti, editors, Proceedings of the 32nd
Annual Conference on Computer Security Applications, ACSAC 2016, Los Angeles,
CA, USA, December 5-9, 2016, pages 289–301. ACM, 2016.

[88] Nampoina Andriamilanto, Tristan Allard, and Gaëtan Le Guelvouit. "guess who?"
large-scale data-centric study of the adequacy of browser fingerprints for web
authentication. In Leonard Barolli, Aneta Poniszewska-Maranda, and Hyunhee
Park, editors, Innovative Mobile and Internet Services in Ubiquitous Computing -
Proceedings of the 14th International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS-2020), Lodz, Poland, 1-3 July, 2020,

https://www.securitymetrics.com/blog/top-10-types-phishing-emails
https://www.securitymetrics.com/blog/top-10-types-phishing-emails
https://people.torproject.org/~brade/tests/canvasTest.html
https://support.torproject.org/glossary/noscript/
https://blog.torproject.org/tor-browser-55-released
https://blog.torproject.org/tor-browser-55-released
https://ublockorigin.com/
https://webassembly.org/
https://www.cloudflare.com/learning/bots/what-is-a-spambot
https://en.wikipedia.org/wiki/Safari_version_history
https://en.wikipedia.org/wiki/Safari_version_history
https://worldwideweb.cern.ch/browser/

140 Bibliography

volume 1195 of Advances in Intelligent Systems and Computing, pages 161–172.
Springer, 2020.

[89] Sarah Bird, Vikas Mishra, Steven Englehardt, Rob Willoughby, David Zeber,
Walter Rudametkin, and Martin Lopatka. Actions speak louder than words: Semi-
supervised learning for browser fingerprinting detection. CoRR, abs/2003.04463,
2020.

[90] Hristo Bojinov, Yan Michalevsky, Gabi Nakibly, and Dan Boneh. Mobile device
identification via sensor fingerprinting. CoRR, abs/1408.1416, 2014.

[91] Elie Bursztein, Steven Bethard, Celine Fabry, John C. Mitchell, and Daniel Jurafsky.
How good are humans at solving captchas? A large scale evaluation. In 31st IEEE
Symposium on Security and Privacy, S&P 2010, 16-19 May 2010, Berleley/Oakland,
California, USA, pages 399–413. IEEE Computer Society, 2010.

[92] Elie Bursztein, Artem Malyshev, Tadek Pietraszek, and Kurt Thomas. Picasso:
Lightweight device class fingerprinting for web clients. In Long Lu and Mohammad
Mannan, editors, Proceedings of the 6th Workshop on Security and Privacy in
Smartphones and Mobile Devices, SPSM@CCS 2016, Vienna, Austria, October 24,
2016, pages 93–102. ACM, 2016.

[93] Yinzhi Cao, Song Li, and Erik Wijmans. (cross-)browser fingerprinting via OS and
hardware level features. In 24th Annual Network and Distributed System Security
Symposium, NDSS 2017, San Diego, California, USA, February 26 - March 1,
2017. The Internet Society, 2017.

[94] Antonin Durey, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. Fp-
redemption: Studying browser fingerprinting adoption for the sake of web security.
In Leyla Bilge, Lorenzo Cavallaro, Giancarlo Pellegrino, and Nuno Neves, editors,
Detection of Intrusions and Malware, and Vulnerability Assessment - 18th Inter-
national Conference, DIMVA 2021, Virtual Event, July 14-16, 2021, Proceedings,
volume 12756 of Lecture Notes in Computer Science, pages 237–257. Springer, 2021.

[95] Antonin Durey, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. An
iterative technique to identify browser fingerprinting scripts. CoRR, abs/2103.00590,
2021.

[96] Peter Eckersley. How unique is your web browser? In Mikhail J. Atallah and
Nicholas J. Hopper, editors, Privacy Enhancing Technologies, 10th International
Symposium, PETS, 2010, Berlin, Germany, July 21-23, 2010. Proceedings, volume
6205 of Lecture Notes in Computer Science, pages 1–18. Springer, 2010.

[97] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site
measurement and analysis. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, pages 1388–1401. ACM, 2016.

Bibliography 141

[98] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,
and Parisa Tabriz. Measuring HTTPS adoption on the web. In Engin Kirda and
Thomas Ristenpart, editors, 26th USENIX Security Symposium, USENIX Security
2017, Vancouver, BC, Canada, August 16-18, 2017, pages 1323–1338. USENIX
Association, 2017.

[99] David Fifield and Serge Egelman. Fingerprinting web users through font metrics.
In Rainer Böhme and Tatsuaki Okamoto, editors, Financial Cryptography and
Data Security - 19th International Conference, FC 2015, San Juan, Puerto Rico,
January 26-30, 2015, Revised Selected Papers, volume 8975 of Lecture Notes in
Computer Science, pages 107–124. Springer, 2015.

[100] Dinei A. F. Florêncio and Cormac Herley. A large-scale study of web password
habits. In Carey L. Williamson, Mary Ellen Zurko, Peter F. Patel-Schneider, and
Prashant J. Shenoy, editors, Proceedings of the 16th International Conference on
World Wide Web, WWW 2007, Banff, Alberta, Canada, May 8-12, 2007, pages
657–666. ACM, 2007.

[101] Imane Fouad, Cristiana Santos, Arnaud Legout, and Nataliia Bielova. Did I delete
my cookies? cookies respawning with browser fingerprinting. CoRR, abs/2105.04381,
2021.

[102] David Freeman, Sakshi Jain, Markus Dürmuth, Battista Biggio, and Giorgio
Giacinto. Who are you? A statistical approach to measuring user authenticity. In
23rd Annual Network and Distributed System Security Symposium, NDSS 2016,
San Diego, California, USA, February 21-24, 2016. The Internet Society, 2016.

[103] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. Hiding in the crowd:
an analysis of the effectiveness of browser fingerprinting at large scale. In Pierre-
Antoine Champin, Fabien L. Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis,
editors, Proceedings of the 2018 World Wide Web Conference on World Wide Web,
WWW 2018, Lyon, France, April 23-27, 2018, pages 309–318. ACM, 2018.

[104] Gábor György Gulyás, Dolière Francis Somé, Nataliia Bielova, and Claude Castel-
luccia. To extend or not to extend: On the uniqueness of browser extensions and
web logins. In David Lie, Mohammad Mannan, and Aaron Johnson, editors, Pro-
ceedings of the 2018 Workshop on Privacy in the Electronic Society, WPES@CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 14–27. ACM, 2018.

[105] Surbhi Gupta, Abhishek Singhal, and Akanksha Kapoor. A literature survey on
social engineering attacks: Phishing attack. In 2016 International Conference on
Computing, Communication and Automation (ICCCA), pages 537–540, 2016.

[106] Sjors Haanen and Tim van Zalingen. Detection of browser fingerprinting by static
javascript code classification. 2018.

[107] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu,
Jean Michel Picod, and Elie Bursztein. Cloak of visibility: Detecting when machines
browse a different web. In IEEE Symposium on Security and Privacy, SP 2016,
San Jose, CA, USA, May 22-26, 2016, pages 743–758. IEEE Computer Society,
2016.

142 Bibliography

[108] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the fingerprinters:
Learning to detect browser fingerprinting behaviors. CoRR, abs/2008.04480, 2020.

[109] Grégoire Jacob, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. PUB-
CRAWL: protecting users and businesses from crawlers. In Tadayoshi Kohno,
editor, Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA,
August 8-10, 2012, pages 507–522. USENIX Association, 2012.

[110] Hugo Jonker, Jelmer Kalkman, Benjamin Krumnow, Marc Sleegers, and Alan
Verresen. Shepherd: Enabling automatic and large-scale login security studies.
CoRR, abs/1808.00840, 2018.

[111] Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. Fingerprint surface-based
detection of web bot detectors. In Kazue Sako, Steve A. Schneider, and Peter Y. A.
Ryan, editors, Computer Security - ESORICS 2019 - 24th European Symposium on
Research in Computer Security, Luxembourg, September 23-27, 2019, Proceedings,
Part II, volume 11736 of Lecture Notes in Computer Science, pages 586–605.
Springer, 2019.

[112] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis. Carnus:
Exploring the privacy threats of browser extension fingerprinting. In 27th Annual
Network and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society, 2020.

[113] Saranga Komanduri, Richard Shay, Patrick Gage Kelley, Michelle L. Mazurek, Lujo
Bauer, Nicolas Christin, Lorrie Faith Cranor, and Serge Egelman. Of passwords
and people: measuring the effect of password-composition policies. In Desney S.
Tan, Saleema Amershi, Bo Begole, Wendy A. Kellogg, and Manas Tungare, editors,
Proceedings of the International Conference on Human Factors in Computing
Systems, CHI 2011, Vancouver, BC, Canada, May 7-12, 2011, pages 2595–2604.
ACM, 2011.

[114] Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and Nick Nikiforakis. Morellian
analysis for browsers: Making web authentication stronger with canvas finger-
printing. In Roberto Perdisci, Clémentine Maurice, Giorgio Giacinto, and Magnus
Almgren, editors, Detection of Intrusions and Malware, and Vulnerability Assess-
ment - 16th International Conference, DIMVA 2019, Gothenburg, Sweden, June
19-20, 2019, Proceedings, volume 11543 of Lecture Notes in Computer Science,
pages 43–66. Springer, 2019.

[115] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. Fprandom: Randomizing core
browser objects to break advanced device fingerprinting techniques. In Eric Bodden,
Mathias Payer, and Elias Athanasopoulos, editors, Engineering Secure Software
and Systems - 9th International Symposium, ESSoS 2017, Bonn, Germany, July
3-5, 2017, Proceedings, volume 10379 of Lecture Notes in Computer Science, pages
97–114. Springer, 2017.

[116] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. Browser
fingerprinting: A survey. ACM Trans. Web, 14(2):8:1–8:33, 2020.

Bibliography 143

[117] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. Beauty and the beast:
Diverting modern web browsers to build unique browser fingerprints. In IEEE
Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May 22-26,
2016, pages 878–894. IEEE Computer Society, 2016.

[118] Pierre Laperdrix, Oleksii Starov, Quan Chen, Alexandros Kapravelos, and Nick
Nikiforakis. Fingerprinting in Style: Detecting Browser Extensions via Injected
Style Sheets. In 30th USENIX Security Symposium, Virtual, France, August 2021.

[119] Song Li and Yinzhi Cao. Who touched my browser fingerprint? a large-scale
measurement study and classification of fingerprint dynamics. In Proceedings of
the ACM Internet Measurement Conference, IMC ’20, page 370–385, New York,
NY, USA, 2020. Association for Computing Machinery.

[120] Jonathan R Mayer. Any person... a pamphleteer”: Internet anonymity in the age
of web 2.0. Undergraduate Senior Thesis, Princeton University, page 85, 2009.

[121] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. Fingerprinting
information in JavaScript implementations. In Helen Wang, editor, Proceedings of
W2SP 2011. IEEE Computer Society, May 2011.

[122] Keaton Mowery and Hovav Shacham. Pixel perfect: Fingerprinting canvas in
HTML5. In Matt Fredrikson, editor, Proceedings of W2SP 2012. IEEE Computer
Society, May 2012.

[123] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian
Schrittwieser, Edgar Weippl, and FC Wien. Fast and reliable browser identification
with javascript engine fingerprinting. In Web 2.0 Workshop on Security and Privacy
(W2SP), volume 5. Citeseer, 2013.

[124] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. Privaricator: Deceiving
fingerprinters with little white lies. In Aldo Gangemi, Stefano Leonardi, and
Alessandro Panconesi, editors, Proceedings of the 24th International Conference on
World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages 820–830.
ACM, 2015.

[125] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. Cookieless monster: Exploring the ecosystem
of web-based device fingerprinting. In 2013 IEEE Symposium on Security and
Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 541–555. IEEE
Computer Society, 2013.

[126] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Díaz. The leaking
battery - A privacy analysis of the HTML5 battery status API. In Joaquín
García-Alfaro, Guillermo Navarro-Arribas, Alessandro Aldini, Fabio Martinelli,
and Neeraj Suri, editors, Data Privacy Management, and Security Assurance - 10th
International Workshop, DPM 2015, and 4th International Workshop, QASA 2015,
Vienna, Austria, September 21-22, 2015. Revised Selected Papers, volume 9481 of
Lecture Notes in Computer Science, pages 254–263. Springer, 2015.

144 Bibliography

[127] Lukasz Olejnik, Steven Englehardt, and Arvind Narayanan. Battery status not
included: Assessing privacy in web standards. In José M. del Álamo, Seda F.
Gürses, and Anupam Datta, editors, Proceedings of the 3rd International Workshop
on Privacy Engineering co-located with 38th IEEE Symposium on Security and
Privacy, IWPE@SP 2017, San Jose, CA, USA, May 25, 2017, volume 1873 of
CEUR Workshop Proceedings, pages 17–24. CEUR-WS.org, 2017.

[128] Aleksandr Ometov, Sergey Bezzateev, Niko Mäkitalo, Sergey Andreev, Tommi
Mikkonen, and Yevgeni Koucheryavy. Multi-factor authentication: A survey.
Cryptogr., 2(1):1, 2018.

[129] Thanasis Petsas, Giorgos Tsirantonakis, Elias Athanasopoulos, and Sotiris Ioannidis.
Two-factor authentication: is the world ready?: quantifying 2fa adoption. In Juan
Caballero and Michalis Polychronakis, editors, Proceedings of the Eighth European
Workshop on System Security, EuroSec 2015, Bordeaux, France, April 21, 2015,
pages 4:1–4:7. ACM, 2015.

[130] Davy Preuveneers and Wouter Joosen. Smartauth: dynamic context fingerprinting
for continuous user authentication. In Roger L. Wainwright, Juan Manuel Corchado,
Alessio Bechini, and Jiman Hong, editors, Proceedings of the 30th Annual ACM
Symposium on Applied Computing, Salamanca, Spain, April 13-17, 2015, pages
2185–2191. ACM, 2015.

[131] Nils Quermann, Marian Harbach, and Markus Dürmuth. The state of user authen-
tication in the wild. USENIX Association, 2018.

[132] Valentino Rizzo. Machine learning approaches for automatic detection of web
fingerprinting. 2018.

[133] Valentino Rizzo, Stefano Traverso, and Marco Mellia. Unveiling web fingerprinting
in the wild via code mining and machine learning. Proc. Priv. Enhancing Technol.,
2021(1):43–63, 2021.

[134] Thomas Rokicki, Clémentine Maurice, and Pierre Laperdrix. SoK: In Search of
Lost Time: A Review of JavaScript Timers in Browsers. In 6th IEEE European
Symposium on Security and Privacy (EuroS&P’21), Vienna, Austria, September
2021.

[135] Takamichi Saito, Kazushi Takahashi, Koki Yasuda, Kazuhisa Tanabe, Masayuki
Taneoka, and Ryohei Hosoya. Tor fingerprinting: Tor browser can mitigate browser
fingerprinting? In Leonard Barolli, Tomoya Enokido, and Makoto Takizawa,
editors, Advances in Network-Based Information Systems, The 20th International
Conference on Network-Based Information Systems, NBiS 2017, Ryerson University,
Toronto, ON, Canada, August 24-26, 2017, volume 7 of Lecture Notes on Data
Engineering and Communications Technologies, pages 504–517. Springer, 2017.

[136] Iskander Sánchez-Rola, Igor Santos, and Davide Balzarotti. Clock around the clock:
Time-based device fingerprinting. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, pages 1502–1514. ACM, 2018.

Bibliography 145

[137] Richard Shay, Saranga Komanduri, Patrick Gage Kelley, Pedro Giovanni Leon,
Michelle L. Mazurek, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor.
Encountering stronger password requirements: user attitudes and behaviors. In
Lorrie Faith Cranor, editor, Proceedings of the Sixth Symposium on Usable Privacy
and Security, SOUPS 2010, Redmond, Washington, USA, July 14-16, 2010, volume
485 of ACM International Conference Proceeding Series. ACM, 2010.

[138] Suphannee Sivakorn, Iasonas Polakis, and Angelos D. Keromytis. The cracked
cookie jar: HTTP cookie hijacking and the exposure of private information. In
IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May
22-26, 2016, pages 724–742. IEEE Computer Society, 2016.

[139] Suphannee Sivakorn, Iasonas Polakis, and Angelos D. Keromytis. I am robot:
(deep) learning to break semantic image captchas. In IEEE European Symposium
on Security and Privacy, EuroS&P 2016, Saarbrücken, Germany, March 21-24,
2016, pages 388–403. IEEE, 2016.

[140] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. Discovering browser
extensions via web accessible resources. In Gail-Joon Ahn, Alexander Pretschner,
and Gabriel Ghinita, editors, Proceedings of the Seventh ACM Conference on Data
and Application Security and Privacy, CODASPY 2017, Scottsdale, AZ, USA,
March 22-24, 2017, pages 329–336. ACM, 2017.

[141] Jan Spooren, Davy Preuveneers, and Wouter Joosen. Mobile device fingerprinting
considered harmful for risk-based authentication. In Juan Caballero and Michalis
Polychronakis, editors, Proceedings of the Eighth European Workshop on System
Security, EuroSec 2015, Bordeaux, France, April 21, 2015, pages 6:1–6:6. ACM,
2015.

[142] Oleksii Starov and Nick Nikiforakis. XHOUND: quantifying the fingerprintability
of browser extensions. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pages 941–956. IEEE Computer Society,
2017.

[143] Naoki Takei, Takamichi Saito, Ko Takasu, and Tomotaka Yamada. Web browser
fingerprinting using only cascading style sheets. In Leonard Barolli, Fatos Xhafa,
Marek R. Ogiela, and Lidia Ogiela, editors, 10th International Conference on
Broadband and Wireless Computing, Communication and Applications, BWCCA
2015, Krakow, Poland, November 4-6, 2015, pages 57–63. IEEE Computer Society,
2015.

[144] Issa Traore, Isaac Woungang, Mohammad S. Obaidat, Youssef Nakkabi, and Iris Lai.
Combining mouse and keystroke dynamics biometrics for risk-based authentication
in web environments. In 2012 Fourth International Conference on Digital Home,
pages 138–145, 2012.

[145] Thomas Unger, Martin Mulazzani, Dominik Fruhwirt, Markus Huber, Sebastian
Schrittwieser, and Edgar R. Weippl. SHPF: enhancing HTTP(S) session security
with browser fingerprinting. In 2013 International Conference on Availability,
Reliability and Security, ARES 2013, Regensburg, Germany, September 2-6, 2013,
pages 255–261. IEEE Computer Society, 2013.

146 Bibliography

[146] Blase Ur, Fumiko Noma, Jonathan Bees, Sean M. Segreti, Richard Shay, Lujo
Bauer, Nicolas Christin, and Lorrie Faith Cranor. "i added ’!’ at the end to make
it secure": Observing password creation in the lab. In Lorrie Faith Cranor, Robert
Biddle, and Sunny Consolvo, editors, Eleventh Symposium On Usable Privacy and
Security, SOUPS 2015, Ottawa, Canada, July 22-24, 2015, pages 123–140. USENIX
Association, 2015.

[147] Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann. Beyond
the front page: Measuring third party dynamics in the field. In Yennun Huang,
Irwin King, Tie-Yan Liu, and Maarten van Steen, editors, WWW ’20: The Web
Conference 2020, Taipei, Taiwan, April 20-24, 2020, pages 1275–1286. ACM /
IW3C2, 2020.

[148] Tom van Goethem, Wout Scheepers, Davy Preuveneers, and Wouter Joosen.
Accelerometer-based device fingerprinting for multi-factor mobile authentication.
In Juan Caballero, Eric Bodden, and Elias Athanasopoulos, editors, Engineering
Secure Software and Systems - 8th International Symposium, ESSoS 2016, London,
UK, April 6-8, 2016. Proceedings, volume 9639 of Lecture Notes in Computer
Science, pages 106–121. Springer, 2016.

[149] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. Fp-
scanner: The privacy implications of browser fingerprint inconsistencies. In
William Enck and Adrienne Porter Felt, editors, 27th USENIX Security Sym-
posium, USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, pages
135–150. USENIX Association, 2018.

[150] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. FP-
STALKER: tracking browser fingerprint evolutions. In 2018 IEEE Symposium
on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA, pages 728–741. IEEE Computer Society, 2018.

[151] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc. FP-
Crawlers: Studying the Resilience of Browser Fingerprinting to Block Crawlers. In
Oleksii Starov, Alexandros Kapravelos, and Nick Nikiforakis, editors, MADWeb’20
- NDSS Workshop on Measurements, Attacks, and Defenses for the Web, San Diego,
United States, February 2020.

[152] Rafael Veras, Christopher Collins, and Julie Thorpe. On semantic patterns of
passwords and their security impact. In 21st Annual Network and Distributed
System Security Symposium, NDSS, 2014, San Diego, California, USA, February
23-26, 2014. The Internet Society, 2014.

[153] Rick Wash, Emilee J. Rader, Ruthie Berman, and Zac Wellmer. Understanding
password choices: How frequently entered passwords are re-used across websites.
In Twelfth Symposium on Usable Privacy and Security, SOUPS 2016, Denver, CO,
USA, June 22-24, 2016, pages 175–188. USENIX Association, 2016.

[154] Stephan Wiefling, Markus Dürmuth, and Luigi Lo Iacono. More than just good
passwords? A study on usability and security perceptions of risk-based authentica-
tion. In ACSAC ’20: Annual Computer Security Applications Conference, Virtual
Event / Austin, TX, USA, 7-11 December, 2020, pages 203–218. ACM, 2020.

Bibliography 147

[155] Stephan Wiefling, Luigi Lo Iacono, and Markus Dürmuth. Is this really you? an
empirical study on risk-based authentication applied in the wild. In Gurpreet
Dhillon, Fredrik Karlsson, Karin Hedström, and André Zúquete, editors, ICT Sys-
tems Security and Privacy Protection - 34th IFIP TC 11 International Conference,
SEC 2019, Lisbon, Portugal, June 25-27, 2019, Proceedings, volume 562 of IFIP
Advances in Information and Communication Technology, pages 134–148. Springer,
2019.

[156] David Zeber, Sarah Bird, Camila Oliveira, Walter Rudametkin, Ilana Segall, Fredrik
Wollsén, and Martin Lopatka. The representativeness of automated web crawls
as a surrogate for human browsing. In Yennun Huang, Irwin King, Tie-Yan Liu,
and Maarten van Steen, editors, WWW ’20: The Web Conference 2020, Taipei,
Taiwan, April 20-24, 2020, pages 167–178. ACM / IW3C2, 2020.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Context
	1.2 Objectives
	1.3 List of Scientific Publications
	1.4 List of Tools and Prototypes
	1.5 Outline

	2 State of the Art
	2.1 Context
	2.1.1 Birth of the Web
	2.1.2 Web evolution

	2.2 Web authentication
	2.2.1 Concept
	2.2.2 Threats and attacks
	2.2.3 Protecting data access
	2.2.4 Bots protection techniques
	2.2.5 Improving authentication

	2.3 Browser fingerprinting
	2.3.1 Definition
	2.3.2 Properties
	2.3.3 Attributes

	2.4 Browser fingerprinting studies
	2.4.1 Measuring browser fingerprinting properties
	2.4.2 Detection and classification

	2.5 Browser fingerprinting countermeasures
	2.5.1 Blocking scripts
	2.5.2 Unifying attributes value
	2.5.3 Changing attributes value over time
	2.5.4 Induced information leaks

	2.6 Browser fingerprinting usages
	2.6.1 User Tracking
	2.6.2 Bot Detection
	2.6.3 User Authentication

	2.7 Conclusion

	3 FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web Security
	3.1 A Dataset of Secure Web Pages
	3.1.1 Websites Under Study
	3.1.2 Web Page Acquisition
	3.1.3 Monitored Fingerprinting Attributes
	3.1.4 Resulting Dataset Description

	3.2 Classification of Fingerprinters
	3.2.1 Incremental Script Classification
	3.2.2 Script Classification Results
	3.2.3 Algorithm results validation

	3.3 Analysis of Secure Web Pages
	3.3.1 Browser Fingerprinting Attributes
	3.3.2 Similarities of Browser Fingerprinting Scripts
	3.3.3 Origins of Browser Fingerprinting Scripts
	3.3.4 Web page type and website category & country impact
	3.3.5 Additional Security Mechanisms

	3.4 Websites resilience against 2 attack models
	3.4.1 Stolen credentials
	3.4.2 Cookie hijacking

	3.5 Discussion
	3.5.1 Intents in fingerprinting usages
	3.5.2 Fingerprinting is barely used for security
	3.5.3 Deficiencies in the state of the art

	3.6 Conclusion

	4 FP-Controlink: Studying fingerprinting under a controlled environment to link fingerprints
	4.1 Methodology
	4.1.1 Controlled environment
	4.1.2 Browser versions
	4.1.3 Attributes
	4.1.4 Data collection

	4.2 Causes of fingerprints diversity
	4.2.1 Desktop evaluation
	4.2.2 Mobile evaluation
	4.2.3 Layers responsible for an attribute change

	4.3 Fingerprints evolution through browser versions
	4.3.1 Release versions
	4.3.2 Nightly/beta versions
	4.3.3 Categorizing attributes

	4.4 A browser fingerprints linking algorithm
	4.4.1 Main goal
	4.4.2 Design
	4.4.3 Parameters

	4.5 Evaluation of the linking algorithm
	4.5.1 Datasets
	4.5.2 Key performance metrics
	4.5.3 Parameters values
	4.5.4 In-the-wild results

	4.6 Discussion
	4.6.1 Ethical consideration
	4.6.2 Choosing parameters value
	4.6.3 Linking algorithm improvements.

	4.7 Conclusion

	5 Advanced risk-based authentication using browser fingerprinting
	5.1 Authentication scheme
	5.1.1 Design
	5.1.2 Challenges

	5.2 Implementation
	5.2.1 Legacy Authentication Systems
	5.2.2 Rising to the challenges
	5.2.3 Authentication scheme and CAS plugin

	5.3 Evaluation
	5.3.1 Dataset constitution
	5.3.2 Key Performance Metrics
	5.3.3 Trusted network fingerprints and authentication attempts
	5.3.4 Linking algorithm scores
	5.3.5 Collection and analysis time

	5.4 Discussion
	5.4.1 Ethical considerations
	5.4.2 Security versus user experience
	5.4.3 Client-side-generated information
	5.4.4 Device management rules
	5.4.5 Compromised device
	5.4.6 Adding features to the authentication scheme

	5.5 Conclusion

	6 Conclusion
	6.1 Contributions
	6.1.1 FP-Redemption: Studying Browser Fingerprinting Adoption for the Sake of Web Security
	6.1.2 FP-Controlink: Studying fingerprinting under a controlled environment to link fingerprints
	6.1.3 Advanced risk-based authentication using browser fingerprinting

	6.2 Short-term perspectives
	6.2.1 Discovering new fingerprinting JavaScript attributes
	6.2.2 Studying attacks targeting fingerprinting-based authentication systems
	6.2.3 Investigating Web Assembly technology

	6.3 Long-term perspectives
	6.4 Concluding note

	Bibliography

